
A Compendium Of Devi
es

Peter Seymour

14 April 2008

2

Prefa
e

This is a work in progress representing some devi
es that
an be used with the

Breathe system. The aim of this book is to build a substantial des
ription of a

realisti
 working environment that is
omplete whilst remaining open. Where

the need arises for new
omponents and add-ons they
an be do
umented here

with referen
e to others and follow in a similar style. For instan
e the appendix

dealing with the Basi
 Chara
ter Set forms a
ommon basis for all general

purpose text devi
es. While there is no requirement to use the same
hara
ters

throughout,
learly it is bene�
ial to do so.

Many frameworks and libraries have been
reated with the goal of providing

an all en
ompassing environment, however, they unwittingly tie themselves to

existing proto
ols and pe
uliarities of other systems. While this is perhaps

the most produ
tive way to pro
eed in the short-term it
auses a situation of

onstant renewal and fragility. As older less relevant systems fall out of favour

so do the
orresponding representations in whatever framework is being used.

This leads to the temptation to start afresh often then en
ompassing popular

features of the time and the pro
ess repeats. Worse still is the in
oheren
y of

popular implementations and the distress of having to
hoose one over another

when what is required is an implementation of an often simple abstra
tion. An

example is perhaps the use of databases. The programmer may have some data

and the only fun
tional requirement is for it to be persisted and then retrieved

in its original state. There is mu
h literature on di�erent storage and retrieval

te
hniques so a solution
an be expe
ted to exist. However, what is often found

is a vast array of di�erent
on�gurations requiring mappings of data types,

destination parameters and large numbers of so
alled potential �optimisations�.

Who demanded all these options? They must be over
ome at great expense to

a
hieve something �ling
abinets have been doing for signi�
antly longer and

with more ease. Of
ourse these options may be needed for other problems but

where is the solution to this simpler problem?

This
ompendium has no impli
it resistan
e to the same pitfalls but the

devi
es outlined attempt to revert ba
k to
anoni
al representations that are

deemed worthy by their own merits. For example the simplest text devi
e just

onsumes a stream of
hara
ters. By resisting the temptation to add support

for multiple
hara
ter sets or
ontrol options for a �xed number of destination

devi
es this de�nition should have a substantial sense of longevity. It
an be

argued that the
hoi
e of
hara
ter set is arbitrary but that design was itself

3

4

subje
t to the same pro
ess. It is therefore hoped that by reapplying the same

prin
iple re
ursively a more
oherent system evolves. Where ne
essary devi
es

an be built that handle a parti
ular pie
e of hardware or proto
ol but the �rst

port of
all should be a genuine abstra
tion of the
ore features. These
an often

be found by looking in more a
ademi
 literature, however, it is important to

sele
t those whi
h show usefulness in pra
ti
al appli
ations. This dual style of

ombining that whi
h is fundamental with that whi
h is useful should preserve

the lifetime of these devi
es.

Contents

1 Devi
es as an Abstra
tion 7

1.1 Introdu
tion . 7

1.2 The Interfa
e . 7

1.3 Con
urren
y . 8

1.3.1 Register Syn
hronisation 8

1.3.2 Signals . 9

2 State
harts 11

2.1 Introdu
tion . 11

2.1.1 State Transitions . 11

2.1.2 State Clustering . 12

2.1.3 Default State . 12

2.1.4 State History . 13

2.1.5 Orthogonality . 13

2.1.6 Variables . 14

3 Des
ribing Devi
es 17

3.1 Synopsis . 17

3.2 Properties Table . 17

3.2.1 Class Name . 17

3.2.2 Usage . 18

3.2.3 Instan
es/Bindings . 18

3.2.4 Signals . 18

3.2.5 Registers . 18

3.2.6 Examples . 18

3.3 Behaviour . 18

3.4 Implementation . 19

4 Common Utility Devi
es 21

4.1 Label . 21

4.2 External Devi
e . 21

4.3 Internal Devi
e . 22

5

6 CONTENTS

5 Text Devi
es 23

5.1 Rill . 23

5.2 Brill . 23

5.3 Brillio . 23

A The Basi
 Chara
ter Set 25

A.0.1 State Ma
hine Control . 25

A.0.2 Verbatim Input . 26

A.0.3 Textual Formatting . 26

A.0.4 De�ned Modes . 27

A.0.5 Pure Symbols . 27

Chapter 1

Devi
es as an Abstra
tion

1.1 Introdu
tion

The Breathe system as outlined in [1℄ spe
i�es an abstra
t system for
omputing

that
an support multiple models. A parti
ular model is shown in [2℄ whi
h

due to its histori
al nature in the development of the Breathe System
ontains

a
omplete des
ription of how models (U* or otherwise) intera
t with their

ontexts. The relevant se
tions are those on types, registers, syn
hronisation

and signals. To bring these models into the �real� world requires a further

abstra
tion of these
ontexts. Any model instan
e a
tually presents a series of

omputations to be performed as a single pro
ess. These
omputations
an only

intera
t externally in two ways: by syn
hronisation of external registers and by

responding to signals. Any external pro
ess represents a devi
e by providing

registers to bind to and/or issuing signals. A devi
e
ould therefore represent

a pie
e of software su
h as a terminal window or a physi
al devi
e su
h as a

keyboard where the user is responsible for driving the pro
ess.

1.2 The Interfa
e

When a model is des
ribed using registers and signals (as in the U*-model) it

impli
itly de�nes an interfa
e. The interfa
e works two ways. Firstly, those

registers that are required for binding must exist externally else the model in-

stan
e will be left hanging. This implies the su�
ient
onditions for allowing

the instan
e to be viewed as well-posed. The se
ond side of the interfa
e is the

set of signals that the model instan
e is prepared to be interrupted by. This im-

plies a super-set of all signals that the model instan
e
ould respond to. Should

a pro
ess supply a signal that is not supported then the error lies within that

pro
ess and not the model instan
e. Ea
h pro
ess therefore de�nes whether the

model instan
e is su�
ient for its purpose and
an rea
t appropriately either

by not using that signal or de
laring the whole system to be ill-posed.

7

8 CHAPTER 1. DEVICES AS AN ABSTRACTION

1.3 Con
urren
y

The system so far outlined
onsists of a number of distin
t pro
esses that
om-

muni
ate with a single instan
e of a Breathe model. Care must now be taken

to de�ne the rules of
ommuni
ation pre
isely to avoid any problems
ommon

in
on
urrent systems su
h as invalid reads or writes.

1.3.1 Register Syn
hronisation

Communi
ation through syn
hronisation of registers is a form of mutual polling.

As the model instan
e syn
hronises-out to an external register it does so instan-

taneously. An external devi
e reading (polling) at any time prior to the syn-

hronisation sees the old value. Whereas at any time after it sees the new value.

For
ompleteness any read o

urring at the exa
t instant of syn
hronisation
an

see either value. For syn
hronisation-in the roles are reversed but the prin
iples

remain the same. This ensures that neither pro
ess sees an invalid value.

Whilst this is an elegant solution that
ompletely de
ouples the model in-

stan
e from the devi
es it is wasteful of resour
es in any real implementation.

Consider a
lo
k that must update the register pra
ti
ally
ontinuously whether

a read is being made or not. With a little
o-operation this situation
an be

remedied.

If the devi
e is allowed to freeze the model instan
e then the path of exe
ution

may leave the model instan
e and be used to
ontrol the devi
e. This does not

violate the model de�nition sin
e from its point of view there is no
on
ept of

real-time only the transition from one state to the next. Ideally ea
h devi
e

ensures that under all
ir
umstan
es it will return in a short period of time as

it has stolen
ontrol. This does not pre
lude a devi
e that
an put the whole

system into hibernation e�e
tly freezing it for an inde�nite period of time. On
e

frozen the devi
e
an perform enough operations to prepare the register values

and safely update or read them atomi
ally. In this sense it has lo
ked all the

registers it is responsible for. Noti
e that a deadlo
k situation is avoided sin
e

the model instan
e does not have the ability to lo
k anything. In the example

of a
lo
k the devi
e only needs to operate when the
urrent time is requested.

This feels like a simple fun
tion
all, an idea that will now be expanded to give

a
omplete pi
ture of register
ommuni
ation.

Under this s
heme �ve
lasses of operation
an be modelled: trigger, send,

re
eive, fun
tion (a
ombination of a send and re
eive) and property (send and

re
eive of a homogeneous type). Taking an operation f , an argument a of type

A, a return value r of type R and a tag type trig (size 1), then the following

table summarises the available options.

Note that A or R may be stru
tural types allowing for multiple arguments

or return values and for the property A = R. These names
an now be
onsis-

tently used to des
ribe devi
e behaviour without expli
itly mentioning low-level

registers and will be used throughout this book.

1.3. CONCURRENCY 9

Table 1.1: Operation Sheme

psuedo-
ode register(s) new syntax

f() �f � ← f : trig trig f

f(a) �f � ← f : A send f : A

r = f() �f � → f : R re
v f : R

r = f(a)
�fsend� ← f : A
�frecv� → f : R

fun
 f : A→ R

r = f

f = a
�f � ↔ f : A prop f : A

1.3.2 Signals

Communi
ation in the form of signals is slightly more
ompli
ated. A simple

proposal is to queue all signals in the order they o

ur. Potentially two or more

devi
es
ould issue signals at the same instant. These
an appear on the queue

in any order whether it is predi
table or not. When the model instan
e yields

all a

umulated signals are inserted into the yielding signal in
hronologi
al

order. This ensures that ea
h pro
ess will have its signals pro
essed in order

but no order is guaranteed between devi
es. This is desirable as ea
h pro
ess

is made independent of the others but internally
onsistent. Whilst the model

instan
e pro
esses these inserted signals more may arrive and are themselves

queued in the re
ently emptied queue. This maintains the requirement that

only a �nite number of signals be inserted and prevents starvation whereby the

model instan
e is
onstantly responding to signals.

The model de�niton leaves open the possibility of using a di�erent strategy

sin
e it requires no stronger a
ondition than that a �nite number of signals be

inserted. Any further
onstraints or strategies are an external
on
ern and a

master devi
e
an be used as a gateway for all other devi
es to
ommuni
ate

with the model instan
e. This allows for more inventive strategies that make

sense in the world of the devi
es. For instan
e a `kill' signal from any devi
e

an be pushed in front of all other signals. Communi
ation between devi
es and

the master devi
e are not dis
ussed here sin
e they do not dire
tly involve the

model. That said the master should be an unblo
kable pro
ess else any devi
e

an bring down the whole system. This is easily ensured by using asyn
hronous

ommuni
ation at the devi
e level.

For the purposes of this book a master devi
e approa
h will be used. To

all intents and purposes it
an be thought of as part of the de�nition of the

model. This master devi
e pro
ess then de�nes the se
ond side of the external

interfa
e and
an take on various forms. One might allow the model to sit

omfortably in a parti
ular operating system responding to typi
al `exe
ute' or

`kill' signals. Another might allow the model to exist on some ad-ho
 pie
e of

hardware. All register binding by a model instan
e will now be with the master

devi
e whi
h
an imitate the union of all the devi
es it represents and even fake

10 CHAPTER 1. DEVICES AS AN ABSTRACTION

others a

ordingly. The typi
al system is shown in �gure 1.1.

Figure 1.1: Master devi
e based system

The alluded to `other
ommuni
ation' is a hint that asyn
hronous
ommu-

ni
ation be used. This adds a high level of fault toleran
e sin
e devi
es
an

fail safely and the master devi
e
an deal with them, say by restarting them.

The master devi
e may allow
ertain devi
es, su
h as the
lo
k, to work syn-

hronously where it trusts them or it may simply implement that fun
tionality

itself. Third party devi
es
an be supplied at a later time and easily integrated

into the system by working with the master devi
e.

Chapter 2

State
harts

2.1 Introdu
tion

State
harts were introdu
ed by David Harel as an attempt to simplify the formal

spe
i�
ation of state ma
hines. Devi
es
an
onveniently be viewed as state

ma
hines where the events arise through register syn
hronisation. For a better

introdu
tion to state
harts please see [5℄ but this
hapter will summarise many

of the features used for devi
e spe
i�
ations. The basi
 prin
iple is to view states

hierar
hi
ally whi
h prevents an explosion of states and allows re-use of
ommon

sub-systems. The method is not
ompletely spe
i�ed and allows some degree of

extension. One su
h extension used here is the introdu
tion of variables whi
h

allow �nite state ma
hines to
over many more devi
es than would otherwise

be possible. Imagine a simple
ounter devi
e whi
h
annot be des
ribed using

�nite states without a variable.

2.1.1 State Transitions

States are depi
ted as re
tangles with rounded
orners and may have a name

indi
ated at the top left. A transition from one state to another is labelled by

an event and optionally a
ondition and/or a
tion. The transition and a
tion

only take pla
e if the
ondition is true otherwise no state
hange is observed.

Figure 2.1: Transition example

In this example a transition o

urs from state A to state B and the a
tion

f() performed when event α o

urs and the
onditon C is true. The form of the

ondition is open so it
an refer to states in other parts of the system, variables

11

12 CHAPTER 2. STATECHARTS

or even external
onditions. The a
tion
an alter the state ma
hine or it
an

have some external e�e
t.

2.1.2 State Clustering

Clustering states into larger superstates allows a system to be broken down

more naturally and prevents dupli
ation of state transitions. Any transition

from a superstate applies to all substates. A transition into a superstate
auses

the system to
hoose one of the substates whi
h is explained over the next few

se
tions. Clustering
an o

ur at any level.

Figure 2.2: Clustering example

This example shows states A and B being
lustered. When event β o

urs

then the system moves into state C if it was previously in state A or B. The

event α is a usual transition from state A to B. The
lustered state
an be given

a name and re-used in other state
harts. A transition
oming into a superstate

an
ross the boundary and point dire
tly at one of the substates. For instan
e

dire
tly from C to A.

2.1.3 Default State

A superstate may spe
ify a default substate to be entered whenever the su-

perstate is entered. This is shown by an arrow emanating from a dot. Any

transition leading to the edge of the superstate
auses the system to enter the

default substate.

Figure 2.3: Default state example

2.1. INTRODUCTION 13

2.1.4 State History

As an extension to the default substate is the
on
ept of state history. On
e

a
lustered state is exited its history remembers the last substate and on re-

entry goes dire
tly into that state. A default state is still required for the �rst

entran
e.

Figure 2.4: State history example

As shown the history is depi
ted by the letter `H' in a
ir
le. The �rst

entran
e to the
lustered state goes to A but subsequent entran
es revert to the

last used substate.

2.1.5 Orthogonality

State
harts have a powerful me
hanism to avoid state explosion by allowing

states to be
onstru
ted using an orthogonal produ
t. By de
omposing a state

into orthogonal
lustered states allows produ
t
ombinations to be represented

anoni
ally. The following example has a superstate with left and right
ompo-

nent denoted L and R respe
tively. The L
omponent takes on a state A or B

whilst the R
omponent simultaneously takes on a state C or D. This produ
t

state transitions by looking at the transitions of ea
h
omponent.

Figure 2.5: Orthogonality example

The next diagram is the equivalent state system but without using orthog-

onality.

14 CHAPTER 2. STATECHARTS

Figure 2.6: State explosion

Noti
e that the orthogonal state 〈L,R〉 requires a default state for ea
h

omponent. By using
onditions that refer to orthogonal
omponents allows

for very
ompli
ated state systems to be modelled. For instan
e γ
ould be

repla
ed by γ(L in A) meaning the R
omponent only
hanges from C to D

when L is in A. A state history
an be used on any
omponent and any number

of
omponents may be used.

2.1.6 Variables

Variables have been added as an extension to the original state
harts. These

are introdu
ed as an ellipse
ontaining the variable name and its type. The

variable then has a state that
an be updated using a
tions and referred to in

onditions.

Figure 2.7: Variables example

This example shows a
ounter (natural number) that
an be in
reased or

de
reased by one without going below zero. Initially it is set to zero.

A se
ond use for variables is to allow information to be passed to the state

ma
hine (devi
e) by the Breathe model. This is a
heived by binding the state-

hart variable to one of the registers that
onstitute part of the devi
e's interfa
e.

Changes to one are instantly re�e
ted in the other.

2.1. INTRODUCTION 15

Figure 2.8: Variable binding example

Here the model register now of stru
tural type time (
omposed of hours,

minutes and se
onds) is bound to three variables in the state ma
hine.

16 CHAPTER 2. STATECHARTS

Chapter 3

Des
ribing Devi
es

This
hapter gives a guide to des
ribing devi
es and standardises mu
h of the

format. Ea
h des
ription should in
lude the
ore features that are
ommon

a
ross all devi
es and allow them to work
onsistently with ea
h other. These

will be displayed in a table near the beginning of the des
ription and allow a

qui
k overview to be found. Where names and texts are used it is assumed these

are all written with the basi

hara
ter set as set out in the appendix.

Devi
es
an be logi
ally grouped into families of similar domains. For in-

stan
e output devi
es di�er from storage devi
es. This grouping
an be repre-

sented by
hapters and se
tions.

Many aspe
ts of devi
es
an be
olle
ted together to form sub-devi
es. The

purpose of these sub-devi
es is to allow easy
omposition of bigger devi
es. Su
h

devi
es are referred to as utility devi
es.

For a
learer exposition of large s
ale
omputing systems using devi
es see

[1℄ whi
h introdu
es some terminology used here.

3.1 Synopsis

The synopsis introdu
es the devi
e and its aims. It allows the reader to very

qui
kly see the abstra
tions and familiar analogies.

3.2 Properties Table

The properties of a devi
e are laid out in a single table and should in
lude at

least the following:

3.2.1 Class Name

The name asso
iated with this des
ription. All devi
e instan
es are instan
es

of a
ertain
lass and although they may have unique names of their own they

share their
lass.

17

18 CHAPTER 3. DESCRIBING DEVICES

3.2.2 Usage

This will either be external, internal or utility and determines how the devi
e

will be used. External and internal devi
es are
overed in more detail in [1℄.

Utility devi
es
an be used to import groups of registers and behaviour into

these devi
e des
riptions.

3.2.3 Instan
es/Bindings

For an external devi
e there will be one distin
t devi
e instan
e for ea
h model

instan
e. For an internal devi
e there will be one shared devi
e instan
e with

multiple
opies of the register interfa
e. The number of instan
es or bindings

available is determined by this �eld. For an internal devi
e this �eld has no

meaning,

3.2.4 Signals

A devi
e may issues signals to one or all of its bound model instan
es. The

omplete list of signals are listed in this �eld.

3.2.5 Registers

The most important part of the des
ription is the register interfa
e. Using the

operations from Figure 1.1 is the simplest way to explain what registers are

available and their intended use. To those operations are added a
ouple more

for handling utility devi
es.

The util f : D operation means to introdu
e all the registers of the utility

devi
e D but as a sub-devi
e
alled f . There may be arbitrary levels of nesting

and the full sequen
e of sub-devi
e names must be used to refer to a register.

The incl : D operation introdu
es a
opy of the sub-devi
eD at the top-level

so the register names of D appear dire
tly.

3.2.6 Examples

Where examples
an be given then they should be listed.

3.3 Behaviour

The behaviour of a devi
e allows a model instan
e to know what to expe
t

when register syn
hronisation o

urs and when signals may arrive. Ideally this

an be
learly demonstrated by a state
hart a

ompanying text, however, other

methods may be more appropriate.

3.4. IMPLEMENTATION 19

3.4 Implementation

O

asionally it is useful to in
lude notes about parti
ular implementation de-

tails.

20 CHAPTER 3. DESCRIBING DEVICES

Chapter 4

Common Utility Devi
es

The devi
es in this
hapter are all utility devi
es that may be useful a
ross

many domains. Most importantly are the base
lasses for external and internal

devi
es. Using these allows all devi
es to have some
ommon features.

The Basi
 Chara
ter Set is used throughout these devi
es as the default

method of handling text. This is denoted by the following type de�nition:

b
har = 192

4.1 Label

A label devi
e represents a possibly empty sequen
e of read-only
hara
ters. It

maintains an internal
ursor to denote the
urrent reading point whi
h starts at

the beginning of the
hara
ters. Reading a
hara
ter advan
es the
ursor unless

it is at the end in whi
h
ase � is read and the
ursor does not move. There is

a trigger to return the
ursor to the start of the
hara
ters.

lass name label

usage utility

signals

registers re
v get:b
har

trig reset

4.2 External Devi
e

An external devi
e is any devi
e that roughly
orresponds to a physi
al devi
e.

To avoid
ontention only one model instan
e may bind to an external devi
e

instan
e. For example it may be the base
lass of monitors, printers, operating

systems and terminal windows.

21

22 CHAPTER 4. COMMON UTILITY DEVICES

lass name external devi
e

usage utility

signals kill

registers util name:label

4.3 Internal Devi
e

An internal devi
e is more transient than an external devi
e and is not
on-

strained by
ontention issues. It
an have multiple model isntan
es bound to it

(although ea
h has its own
opy of the registers and signal
hannel). For example

it may be the base
lass of a gateway to an external devi
e or a
ommuni
ation

pipe.

lass name internal devi
e

usage utility

signals

registers util name:label

Chapter 5

Text Devi
es

This
hapter deals with some
ommon text devi
es.

5.1 Rill

Rill is the simplest of all text devi
es a

epting as a single stream of
hara
ters.

5.2 Brill

5.3 Brillio

23

24 CHAPTER 5. TEXT DEVICES

Appendix A

The Basi
 Chara
ter Set

This se
tion details the Basi
 Chara
ter Set. It
onsists of 192
hara
ter symbols

as displayed below.

���������	
��
Æ�����������������

 !"#$%&'()*+,-./0123456789:;<=>?

�ABCDEFGHIJKLMNOPQRSTUVWXYZ[\℄^_

`ab
defghijklmnopqrstuvwxyz{|}~�

���������������Ǳ����������������

 ¡¢£¤¥�§¨©ª«¬­®¯°±²³´µ¶·¸¹º»¼½¾¿

It is intentional that all
hara
ters have a de�nite symbol even if they imply

some form of formatting. This allows the set to be viewed as a set of purely

graphi
al symbols with no meaning atta
hed if ne
essary. On the other hand

the set is laid out it a way to form an alphabet of input symbols to a
lass

of state ma
hines. It is this se
ond meaning that is dis
ussed more fully here,

however, the �rst use is not without its merits.

The input symbols are hierar
hi
al with the earlier ones taking pre
eden
e

over the later ones. Ea
h symbol then may have a di�erent meaning depending

on its
ontext, namely the symbols that pre
ede it.

A.0.1 State Ma
hine Control

At the top level are two
ontrol symbols whi
h have a universal meaning a
ross

state ma
hines and enable some form of transa
tion management. The �rst

symbol is intended to perform a
ommit su
h that all symbols pre
eeding it

are �rmly
ommitted to. After a
ommit the state ma
hine is returned to its

initial state. This sits at the top of the hierar
hy sin
e it e�e
tively overrides all

other behaviours for instan
e any formatting
ontrol will be reset. The se
ond

symbol rollba
k will return all behaviours to their initial state and ideally remove

all symbols that were input to the ma
hine sin
e the last
ommit or start of

the ma
hine if no
ommits have been made. This is a very important symbol

25

26 APPENDIX A. THE BASIC CHARACTER SET

allowing the state ma
hine to be put into a known state before pro
eeding

therefore removing
ontext.

Control

00 �
ommit

01 � rollba
k

When
hara
ters are used as output symbols then �
an denote a null
har-

a
ter.

A.0.2 Verbatim Input

At the next highest level is
ontrol for verbatim output. This permits any state

ma
hine spe
i�
 pro
essing to be overridden for all symbols o

uring between

losed pairs of verbatim bra
kets. This
on
ept
an be repeated to any level

allowing input to be nested. The level of this nesting is the verbatim level. In

essense this marks that a string of symbols should not be the
on
ern of this

state ma
hine but be treated purely as a string of symbols. Perhaps this string is

to be delegated to another more spe
ialised state ma
hine. This pro
ess allows

arbitrary nesting of strings in meta-
ontent, meta-meta-
ontent et
.

Should the verbatim bra
kets be
ome ill-formed i.e. more
losing bra
kets

are seen than opening ones then this is an error state to be handled however a

ma
hine wishes.

Sin
e the
ommit and rollba
k symbols pre
eed these bra
kets, they will

return the verbatim level to zero for the start of the next transa
tion.

Verbatim

02 � verbbegin

03 � verbend

A.0.3 Textual Formatting

Now that the state ma
hine spe
i�
 symbols have been
overed, the more fa-

miliar formatting symbols appear. At this level the input symbols are to be

treated perhaps as text in a do
ument. These formatting symbols represent

the usual methods to break a do
ument down into manageable
omponents of

words, lines, paragraphs et
. How this formatting is a
heived is spe
i�
 to the

target ma
hine but it should be noted that there is a blank symbol near the end

of the set. This
an be used to a
hieve white spa
e without resorting to more

ompli
ated methods.

Formatting should restore itself to an initial state after a
ommit or rollba
k

symbol. When the verbatim level is greater than zero all formatting should be

turned o� for symbols lower in the hierar
hy than the
ontrol and verbatim.

Sin
e all
hara
ters have a graphi
al representation this
an be easily a
hieved.

27

Format

04 � spa
e

05 � tab

06 � linebreak

07 � parabreak

08 � pagebreak

09 	 se
tionbreak

0a

hapterbreak

A.0.4 De�ned Modes

Within a formatted do
ument there may appear
omplex
onstru
ts su
h as

tags, tuples, paths through a graph et
. In fa
t any meta-
ontent that is to be

implied by the do
ument. For this purpose 8 mode symbols are in
luded. They

have no pre-de�ned intention but allow a state ma
hine to derive its own
ontext

sensitive information. For instan
e to en
lose pure symbols and denote them

as meta-tags, to a
t as a delimiter between symbol strings or even to en
ode

higher level formating su
h as fonts and
olours. If 8 modes are not su�
ient

then they
an be
ombined into sequen
es to give any number of modes.

Whatever
ontext is
reated should also obey the rules of the
ommit and

rollba
k symbols. When the verbatim level is greater than zero then it is sug-

gested that this
ontext be suppressed.

Mode

0b � mode0

0
 � mode1

0d
 mode2

0e Æ mode3

0f � mode4

10 � mode5

11 � mode6

12 � mode7

A.0.5 Pure Symbols

The following se
tions list the pure symbols. They are divided up into similar

groups but from a state ma
hine perspe
tive have no meaning.

The standard digits for base 10 arithmeti
.

Digits

13 � 0

.

.

.

.

.

.

.

.

.

1
 � 9

The lower
ase letters in alphabeti
al order. Note that the digits followed by

the �rst six lower
ase letters lend themselves to hexade
imal numbering.

28 APPENDIX A. THE BASIC CHARACTER SET

Lower
ase

1d � a

.

.

.

.

.

.

.

.

.

36 6 z

The
orresponding upper
ase letters.

Upper
ase

37 7 A

.

.

.

.

.

.

.

.

.

50 P Z

All standard forms of pun
tuation have been admitted. Care should be taken

to be expli
it about use. Whereas the dash and hyphen may be inter
hanged in

some systems this is not the
ase here. The same is true of the apostrophe and

single right quote or indeed the distin
tion between left and right quotes. The

slash is distin
t from its division
ounterpart.

Pun
tuation

51 Q apostrophe

52 R singlequoteleft

53 S singlequoteright

54 T doublequoteleft

55 U doublequoteright

56 V parenleft

57 W parenright

58 X squarebra
ketleft

59 Y squarebra
ketright

5a Z bra
eleft

5b [bra
eright

5
 \ anglebra
ketleft

5d ℄ anglebra
ketright

5e ^
olon

5f _
omma

60 ` dash

61 a ellipsis

62 b ex
laim

63
 fullstop

64 d guillemetleft

65 e guillemetright

66 f hyphen

67 g questionmark

68 h semi
olon

69 i slash

The text symbols are a
olle
tion of widely used symbols to enri
h text. They

in
lude most symbols that are en
ountered in the �eld of
omputing for ba
k-

29

ward
ompatability. The illegible
hara
ter denotes reporting a sour
e
hara
ter

that
ould not be read. The unprintable
hara
ter on the other hand denotes a

hara
ter that is known but unavailable within this
hara
ter set.

Symbol

6a j unders
ore

6b k ampersand

6
 l asterisk

6d m at

6e n ba
kslash

6f o
ir
um�ex

70 p dollar

71 q numbersign

72 r per
ent

73 s prime

74 t doubleprime

75 u tilde

76 v grave

77 w vertbar

78 x arrowup

79 y arrowdown

7a z arrowupdown

7b { arrowleft

7
 | arrowright

7d } arrowleftright

7e ~ doublearrowleft

7f � doublearrowright

80 � doublearrowleftright

81 �
opyright

82 � registered

83 � pil
row

84 � se
tionsign

85 � smiley

86 � bullet

87 � illegible
hara
ter

88 � unprintable
hara
ter

89 �
ard
lub

8a �
arddiamond

8b �
ardheart

8
 �
ardspade

The mathemati
al symbols enlarge on some of the pre
eeding symbols to

aid the
lear exposition of arithmeti
, logi
 amd set theory. Ea
h of whi
h have

useful notations for
omputing related problems. Symbols su
h as arrows
an

be found earlier in the set.

30 APPENDIX A. THE BASIC CHARACTER SET

Math

8d � plus

8e � minus

8f Ǳ plusminus

90 � divisionslash

91 � dotprodu
t

92 �
artesianprodu
t

93 �
omposition

94 � topelement

95 � bottomelement

96 � lessthan

97 � greaterthan

98 � lessthanequal

99 � greaterthanequal

9a � mu
hless

9b � mu
hmore

9
 � equal

9d � notequal

9e � identi
al

9f � almostequal

a0 in�nity

a1 ¡ notsign

a2 ¢ proves

a3 £ models

a4 ¤
onjun
tion

a5 ¥ disjun
tion

a6 � interse
tion

a7 § union

a8 ¨ subset

a9 © element

aa ª emptyset

ab « naturals

a
 ¬ integers

ad ­ rationals

ae ® reals

af ¯
omplex�eld

b0 ° forall

b1 ± exists

The box symbols allow primitive formatting of boxes to produ
e tables et
.

In a monospa
e environment this
an signi�
antly aid readability without adding

too mu
h
omplexity.

31

Box

b2 ² boxtopleft

b3 ³ boxtopright

b4 ´ boxbottomright

b5 µ boxbottomleft

b6 ¶ box
ross

b7 · boxuppertse
tion

b8 ¸ boxlowertse
tion

b9 ¹ boxlefttse
tion

ba º boxrigthtse
tion

bb » boxverti
al

b
 ¼ boxhorizontal

bd ½ boxblankblo
k

be ¾ boxlightblo
k

bf ¿ box�lledblo
k

32 APPENDIX A. THE BASIC CHARACTER SET

Bibliography

[1℄ �The Breathe System�, P. Seymour, 2008.

[2℄ �The U*-model�, P. Seymour, 2008.

[3℄ �A Pattern For Devi
e Drivers�, P. Seymour, 2007.

[4℄ �Spe
ifying Asyn
hronous Devi
e Behaviour�, P. Seymour, 2007.

[5℄ �State
harts: A Visual Formalism For Complex Systems�, D. Harel, 1987.

33

