A Compendium Of Devices

Peter Seymour

14 April 2008

Preface

This is a work in progress representing some devices that can be used with the
Breathe system. The aim of this book is to build a substantial description of a
realistic working environment that is complete whilst remaining open. Where
the need arises for new components and add-ons they can be documented here
with reference to others and follow in a similar style. For instance the appendix
dealing with the Basic Character Set forms a common basis for all general
purpose text devices. While there is no requirement to use the same characters
throughout, clearly it is beneficial to do so.

Many frameworks and libraries have been created with the goal of providing
an all encompassing environment, however, they unwittingly tie themselves to
existing protocols and peculiarities of other systems. While this is perhaps
the most productive way to proceed in the short-term it causes a situation of
constant renewal and fragility. As older less relevant systems fall out of favour
so do the corresponding representations in whatever framework is being used.
This leads to the temptation to start afresh often then encompassing popular
features of the time and the process repeats. Worse still is the incoherency of
popular implementations and the distress of having to choose one over another
when what is required is an implementation of an often simple abstraction. An
example is perhaps the use of databases. The programmer may have some data
and the only functional requirement is for it to be persisted and then retrieved
in its original state. There is much literature on different storage and retrieval
techniques so a solution can be expected to exist. However, what is often found
is a vast array of different configurations requiring mappings of data types,
destination parameters and large numbers of so called potential “optimisations”.
Who demanded all these options? They must be overcome at great expense to
achieve something filing cabinets have been doing for significantly longer and
with more ease. Of course these options may be needed for other problems but
where is the solution to this simpler problem?

This compendium has no implicit resistance to the same pitfalls but the
devices outlined attempt to revert back to canonical representations that are
deemed worthy by their own merits. For example the simplest text device just
consumes a stream of characters. By resisting the temptation to add support
for multiple character sets or control options for a fixed number of destination
devices this definition should have a substantial sense of longevity. It can be
argued that the choice of character set is arbitrary but that design was itself

subject to the same process. It is therefore hoped that by reapplying the same
principle recursively a more coherent system evolves. Where necessary devices
can be built that handle a particular piece of hardware or protocol but the first
port of call should be a genuine abstraction of the core features. These can often
be found by looking in more academic literature, however, it is important to
select those which show usefulness in practical applications. This dual style of
combining that which is fundamental with that which is useful should preserve
the lifetime of these devices.

Contents

1 Devices as an Abstraction

1.1 Imtroduction
1.2 The Interface
1.3 Concurrency oo i e e e e
1.3.1 Register Synchronisation
132 Signals.o

2 Statecharts

2.1 Introduction
2.1.1 State Transitions
2.1.2 State Clustering
2.1.3 Default State,
2.1.4 State History
2.1.5 Orthogonality
2.1.6 Variables

3 Describing Devices

3.1 Synopsis . . .o oo
3.2 Properties Table L.
321 ClassName
322 Usage
3.2.3 Instances/Bindings
324 Signals.
3.25 Registers o
326 Examples o
3.3 Behaviour
3.4 Implementation

4 Common Utility Devices

4.1 Label
4.2 External Device
4.3 Internal Device

11
11
11
12
12
13
13
14

17
17
17
17
18
18
18
18
18
18
19

6 CONTENTS

5 Text Devices 23
51 Rill. . . . e 23
5.2 Brill . . . e 23
53 Brillio 23

A The Basic Character Set 25

A.0.1 State Machine Control 25
A.0.2 Verbatim Input 26
A.0.3 Textual Formatting 26
A.0.4 Defined Modes 27

A.05 PureSymbols 27

Chapter 1

Devices as an Abstraction

1.1 Introduction

The Breathe system as outlined in [1] specifies an abstract system for computing
that can support multiple models. A particular model is shown in [2] which
due to its historical nature in the development of the Breathe System contains
a complete description of how models (U* or otherwise) interact with their
contexts. The relevant sections are those on types, registers, synchronisation
and signals. To bring these models into the “real” world requires a further
abstraction of these contexts. Any model instance actually presents a series of
computations to be performed as a single process. These computations can only
interact externally in two ways: by synchronisation of external registers and by
responding to signals. Any external process represents a device by providing
registers to bind to and/or issuing signals. A device could therefore represent
a piece of software such as a terminal window or a physical device such as a
keyboard where the user is responsible for driving the process.

1.2 The Interface

When a model is described using registers and signals (as in the U*-model) it
implicitly defines an interface. The interface works two ways. Firstly, those
registers that are required for binding must exist externally else the model in-
stance will be left hanging. This implies the sufficient conditions for allowing
the instance to be viewed as well-posed. The second side of the interface is the
set of signals that the model instance is prepared to be interrupted by. This im-
plies a super-set of all signals that the model instance could respond to. Should
a process supply a signal that is not supported then the error lies within that
process and not the model instance. Each process therefore defines whether the
model instance is sufficient for its purpose and can react appropriately either
by not using that signal or declaring the whole system to be ill-posed.

7

8 CHAPTER 1. DEVICES AS AN ABSTRACTION

1.3 Concurrency

The system so far outlined consists of a number of distinct processes that com-
municate with a single instance of a Breathe model. Care must now be taken
to define the rules of communication precisely to avoid any problems common
in concurrent systems such as invalid reads or writes.

1.3.1 Register Synchronisation

Communication through synchronisation of registers is a form of mutual polling.
As the model instance synchronises-out to an external register it does so instan-
taneously. An external device reading (polling) at any time prior to the syn-
chronisation sees the old value. Whereas at any time after it sees the new value.
For completeness any read occurring at the exact instant of synchronisation can
see either value. For synchronisation-in the roles are reversed but the principles
remain the same. This ensures that neither process sees an invalid value.

Whilst this is an elegant solution that completely decouples the model in-
stance from the devices it is wasteful of resources in any real implementation.
Consider a clock that must update the register practically continuously whether
a read is being made or not. With a little co-operation this situation can be
remedied.

If the device is allowed to freeze the model instance then the path of execution
may leave the model instance and be used to control the device. This does not
violate the model definition since from its point of view there is no concept of
real-time only the transition from one state to the next. Ideally each device
ensures that under all circumstances it will return in a short period of time as
it has stolen control. This does not preclude a device that can put the whole
system into hibernation effectly freezing it for an indefinite period of time. Once
frozen the device can perform enough operations to prepare the register values
and safely update or read them atomically. In this sense it has locked all the
registers it is responsible for. Notice that a deadlock situation is avoided since
the model instance does not have the ability to lock anything. In the example
of a clock the device only needs to operate when the current time is requested.
This feels like a simple function call, an idea that will now be expanded to give
a complete picture of register communication.

Under this scheme five classes of operation can be modelled: trigger, send,
receive, function (a combination of a send and receive) and property (send and
receive of a homogeneous type). Taking an operation f, an argument a of type
A, a return value r of type R and a tag type trig (size 1), then the following
table summarises the available options.

Note that A or R may be structural types allowing for multiple arguments
or return values and for the property A = R. These names can now be consis-
tently used to describe device behaviour without explicitly mentioning low-level
registers and will be used throughout this book.

1.3. CONCURRENCY 9

Table 1.1: Operation Sheme

psuedo-code | register(s) new syntax

70 “f e fatrig | i8S

f(a) “pe fiA send f: A
r=f0 |pofiR |V [iR
r=fa) | Jed LA fme fiA o R
! “psfoa | propfiA

1.3.2 Signals

Communication in the form of signals is slightly more complicated. A simple
proposal is to queue all signals in the order they occur. Potentially two or more
devices could issue signals at the same instant. These can appear on the queue
in any order whether it is predictable or not. When the model instance yields
all accumulated signals are inserted into the yielding signal in chronological
order. This ensures that each process will have its signals processed in order
but no order is guaranteed between devices. This is desirable as each process
is made independent of the others but internally consistent. Whilst the model
instance processes these inserted signals more may arrive and are themselves
queued in the recently emptied queue. This maintains the requirement that
only a finite number of signals be inserted and prevents starvation whereby the
model instance is constantly responding to signals.

The model definiton leaves open the possibility of using a different strategy
since it requires no stronger a condition than that a finite number of signals be
inserted. Any further constraints or strategies are an external concern and a
master device can be used as a gateway for all other devices to communicate
with the model instance. This allows for more inventive strategies that make
sense in the world of the devices. For instance a ‘kill’ signal from any device
can be pushed in front of all other signals. Communication between devices and
the master device are not discussed here since they do not directly involve the
model. That said the master should be an unblockable process else any device
can bring down the whole system. This is easily ensured by using asynchronous
communication at the device level.

For the purposes of this book a master device approach will be used. To
all intents and purposes it can be thought of as part of the definition of the
model. This master device process then defines the second side of the external
interface and can take on various forms. One might allow the model to sit
comfortably in a particular operating system responding to typical ‘execute’ or
‘kill’ signals. Another might allow the model to exist on some ad-hoc piece of
hardware. All register binding by a model instance will now be with the master
device which can imitate the union of all the devices it represents and even fake

10 CHAPTER 1. DEVICES AS AN ABSTRACTION

others accordingly. The typical system is shown in figure 1.1.

————

-~ ~
/- : ™\
s [Device)
\\\ ///

4 \
e Device)
\\ /// —> Signal

SNSe————

€——4&@ Register Synchronisation
rANANA - Other Communication

Figure 1.1: Master device based system

The alluded to ‘other communication’ is a hint that asynchronous commu-
nication be used. This adds a high level of fault tolerance since devices can
fail safely and the master device can deal with them, say by restarting them.
The master device may allow certain devices, such as the clock, to work syn-
chronously where it trusts them or it may simply implement that functionality
itself. Third party devices can be supplied at a later time and easily integrated
into the system by working with the master device.

Chapter 2

Statecharts

2.1 Introduction

Statecharts were introduced by David Harel as an attempt to simplify the formal
specification of state machines. Devices can conveniently be viewed as state
machines where the events arise through register synchronisation. For a better
introduction to statecharts please see [5] but this chapter will summarise many
of the features used for device specifications. The basic principle is to view states
hierarchically which prevents an explosion of states and allows re-use of common
sub-systems. The method is not completely specified and allows some degree of
extension. Omne such extension used here is the introduction of variables which
allow finite state machines to cover many more devices than would otherwise
be possible. Imagine a simple counter device which cannot be described using
finite states without a variable.

2.1.1 State Transitions

States are depicted as rectangles with rounded corners and may have a name
indicated at the top left. A transition from one state to another is labelled by
an event and optionally a condition and/or action. The transition and action
only take place if the condition is true otherwise no state change is observed.

A a(C)/f0)

Figure 2.1: Transition example
In this example a transition occurs from state A to state B and the action
f() performed when event a occurs and the conditon C is true. The form of the

condition is open so it can refer to states in other parts of the system, variables

11

12 CHAPTER 2. STATECHARTS

or even external conditions. The action can alter the state machine or it can
have some external effect.

2.1.2 State Clustering

Clustering states into larger superstates allows a system to be broken down
more naturally and prevents duplication of state transitions. Any transition
from a superstate applies to all substates. A transition into a superstate causes
the system to choose one of the substates which is explained over the next few
sections. Clustering can occur at any level.

)
A

—

o Po{C
Y

CH

Y

—
— J
Figure 2.2: Clustering example

This example shows states A and B being clustered. When event § occurs
then the system moves into state C' if it was previously in state A or B. The
event « is a usual transition from state A to B. The clustered state can be given
a name and re-used in other statecharts. A transition coming into a superstate
can cross the boundary and point directly at one of the substates. For instance
directly from C to A.

2.1.3 Default State

A superstate may specify a default substate to be entered whenever the su-
perstate is entered. This is shown by an arrow emanating from a dot. Any
transition leading to the edge of the superstate causes the system to enter the
default substate.

A

Figure 2.3: Default state example

2.1. INTRODUCTION 13

2.1.4 State History

As an extension to the default substate is the concept of state history. Once
a clustered state is exited its history remembers the last substate and on re-
entry goes directly into that state. A default state is still required for the first
entrance.

v ©
A

Figure 2.4: State history example

As shown the history is depicted by the letter ‘H’ in a circle. The first
entrance to the clustered state goes to A but subsequent entrances revert to the
last used substate.

2.1.5 Orthogonality

Statecharts have a powerful mechanism to avoid state explosion by allowing
states to be constructed using an orthogonal product. By decomposing a state
into orthogonal clustered states allows product combinations to be represented
canonically. The following example has a superstate with left and right compo-
nent denoted L and R respectively. The L component takes on a state A or B
whilst the R component simultaneously takes on a state C' or D. This product
state transitions by looking at the transitions of each component.

(LV ERV)
A |i(C
\ AN J
ﬁA v 5] v’
fB) E fD)\
.

\. ! J

Figure 2.5: Orthogonality example

The next diagram is the equivalent state system but without using orthog-
onality.

14 CHAPTER 2. STATECHARTS

>
@
A
=y
w
@

Ay Ay
5|y oy
o

(A,D \()rB,D)
p

) —

Figure 2.6: State explosion

Notice that the orthogonal state (L, R) requires a default state for each
component. By using conditions that refer to orthogonal components allows
for very complicated state systems to be modelled. For instance v could be
replaced by v(L in A) meaning the R component only changes from C to D
when L isin A. A state history can be used on any component and any number
of components may be used.

2.1.6 Variables

Variables have been added as an extension to the original statecharts. These
are introduced as an ellipse containing the variable name and its type. The
variable then has a state that can be updated using actions and referred to in

conditions.
V [count:=0
A

up(count<10)
/count:=count+1

down(count>0)
/count:=count-1

Figure 2.7: Variables example

This example shows a counter (natural number) that can be increased or
decreased by one without going below zero. Initially it is set to zero.

A second use for variables is to allow information to be passed to the state
machine (device) by the Breathe model. This is acheived by binding the state-
chart variable to one of the registers that constitute part of the device’s interface.
Changes to one are instantly reflected in the other.

2.1. INTRODUCTION 15

0d) -,
84 H ..
a L] L3
T -
1

Figure 2.8: Variable binding example

Here the model register now of structural type time (composed of hours,
minutes and seconds) is bound to three variables in the state machine.

16

CHAPTER 2. STATECHARTS

Chapter 3

Describing Devices

This chapter gives a guide to describing devices and standardises much of the
format. Each description should include the core features that are common
across all devices and allow them to work consistently with each other. These
will be displayed in a table near the beginning of the description and allow a
quick overview to be found. Where names and texts are used it is assumed these
are all written with the basic character set as set out in the appendix.

Devices can be logically grouped into families of similar domains. For in-
stance output devices differ from storage devices. This grouping can be repre-
sented by chapters and sections.

Many aspects of devices can be collected together to form sub-devices. The
purpose of these sub-devices is to allow easy composition of bigger devices. Such
devices are referred to as utility devices.

For a clearer exposition of large scale computing systems using devices see
[1] which introduces some terminology used here.

3.1 Synopsis

The synopsis introduces the device and its aims. It allows the reader to very
quickly see the abstractions and familiar analogies.

3.2 Properties Table

The properties of a device are laid out in a single table and should include at
least the following:

3.2.1 Class Name

The name associated with this description. All device instances are instances
of a certain class and although they may have unique names of their own they
share their class.

17

18 CHAPTER 3. DESCRIBING DEVICES

3.2.2 Usage

This will either be external, internal or utility and determines how the device
will be used. External and internal devices are covered in more detail in [1].
Utility devices can be used to import groups of registers and behaviour into
these device descriptions.

3.2.3 Instances/Bindings

For an external device there will be one distinct device instance for each model
instance. For an internal device there will be one shared device instance with
multiple copies of the register interface. The number of instances or bindings
available is determined by this field. For an internal device this field has no
meaning,

3.2.4 Signals

A device may issues signals to one or all of its bound model instances. The
complete list of signals are listed in this field.

3.2.5 Registers

The most important part of the description is the register interface. Using the
operations from Figure 1.1 is the simplest way to explain what registers are
available and their intended use. To those operations are added a couple more
for handling utility devices.

The wtil f : D operation means to introduce all the registers of the utility
device D but as a sub-device called f. There may be arbitrary levels of nesting
and the full sequence of sub-device names must be used to refer to a register.

The incl : D operation introduces a copy of the sub-device D at the top-level
so the register names of D appear directly.

3.2.6 Examples

Where examples can be given then they should be listed.

3.3 Behaviour

The behaviour of a device allows a model instance to know what to expect
when register synchronisation occurs and when signals may arrive. Ideally this
can be clearly demonstrated by a statechart accompanying text, however, other
methods may be more appropriate.

3.4. IMPLEMENTATION 19

3.4 Implementation

Occasionally it is useful to include notes about particular implementation de-
tails.

20

CHAPTER 3. DESCRIBING DEVICES

Chapter 4

Common Utility Devices

The devices in this chapter are all utility devices that may be useful across
many domains. Most importantly are the base classes for external and internal
devices. Using these allows all devices to have some common features.

The Basic Character Set is used throughout these devices as the default
method of handling text. This is denoted by the following type definition:

bchar = 192

4.1 Label

A label device represents a possibly empty sequence of read-only characters. It
maintains an internal cursor to denote the current reading point which starts at
the beginning of the characters. Reading a character advances the cursor unless
it is at the end in which case m is read and the cursor does not move. There is
a trigger to return the cursor to the start of the characters.

class name | label

usage utility

signals

registers recv get:bchar
trig reset

4.2 External Device

An external device is any device that roughly corresponds to a physical device.
To avoid contention only one model instance may bind to an external device
instance. For example it may be the base class of monitors, printers, operating
systems and terminal windows.

21

22 CHAPTER 4. COMMON UTILITY DEVICES

class name | external device
usage utility

signals kill

registers util name:label

4.3 Internal Device

An internal device is more transient than an external device and is not con-
strained by contention issues. It can have multiple model isntances bound to it
(although each has its own copy of the registers and signal channel). For example
it may be the base class of a gateway to an external device or a communication

pipe.

class name | internal device
usage utility

signals
registers util name:label

Chapter 5

Text Devices

This chapter deals with some common text devices.

5.1 Rill

Rill is the simplest of all text devices accepting as a single stream of characters.

5.2 Brill
5.3 Brillio

23

24

CHAPTER 5. TEXT DEVICES

Appendix A

The Basic Character Set

This section details the Basic Character Set. It consists of 192 character symbols
as displayed below.

WO] e Ton2Be(70123456 78 9abe
defghijklmnopgrstuvwxyzABCDEFGHT
JKLMNOPQRSTUVWXYZ”> >« () [1{}():,
ol o» =25 /_&FRANNSHS T [t e ees
SORISO [P MOYI+—+ /. XoT | <><>ww=#=~
ook FAVNUCEPNZORCYT - YL H |-

It is intentional that all characters have a definite symbol even if they imply
some form of formatting. This allows the set to be viewed as a set of purely
graphical symbols with no meaning attached if necessary. On the other hand
the set is laid out it a way to form an alphabet of input symbols to a class
of state machines. It is this second meaning that is discussed more fully here,
however, the first use is not without its merits.

The input symbols are hierarchical with the earlier ones taking precedence
over the later ones. Each symbol then may have a different meaning depending
on its context, namely the symbols that precede it.

A.0.1 State Machine Control

At the top level are two control symbols which have a universal meaning across
state machines and enable some form of transaction management. The first
symbol is intended to perform a commit such that all symbols preceeding it
are firmly committed to. After a commit the state machine is returned to its
initial state. This sits at the top of the hierarchy since it effectively overrides all
other behaviours for instance any formatting control will be reset. The second
symbol rollback will return all behaviours to their initial state and ideally remove
all symbols that were input to the machine since the last commit or start of
the machine if no commits have been made. This is a very important symbol

25

26 APPENDIX A. THE BASIC CHARACTER SET

allowing the state machine to be put into a known state before proceeding
therefore removing context.

Control
00 m commit
01 o rollback

When characters are used as output symbols then m can denote a null char-
acter.

A.0.2 Verbatim Input

At the next highest level is control for verbatim output. This permits any state
machine specific processing to be overridden for all symbols occuring between
closed pairs of verbatim brackets. This concept can be repeated to any level
allowing input to be nested. The level of this nesting is the verbatim level. In
essense this marks that a string of symbols should not be the concern of this
state machine but be treated purely as a string of symbols. Perhaps this string is
to be delegated to another more specialised state machine. This process allows
arbitrary nesting of strings in meta-content, meta-meta-content etc.

Should the verbatim brackets become ill-formed i.e. more closing brackets
are seen than opening ones then this is an error state to be handled however a
machine wishes.

Since the commit and rollback symbols preceed these brackets, they will
return the verbatim level to zero for the start of the next transaction.

Verbatim
02 [verbbegin
03 3§ verbend

A.0.3 Textual Formatting

Now that the state machine specific symbols have been covered, the more fa-
miliar formatting symbols appear. At this level the input symbols are to be
treated perhaps as text in a document. These formatting symbols represent
the usual methods to break a document down into manageable components of
words, lines, paragraphs etc. How this formatting is acheived is specific to the
target machine but it should be noted that there is a blank symbol near the end
of the set. This can be used to achieve white space without resorting to more
complicated methods.

Formatting should restore itself to an initial state after a commit or rollback
symbol. When the verbatim level is greater than zero all formatting should be
turned off for symbols lower in the hierarchy than the control and verbatim.
Since all characters have a graphical representation this can be easily achieved.

27

Format

04 _, space

05 ~ tab

06 < linebreak

07 = parabreak

08 =+ pagebreak

09 > sectionbreak
O0a 11 chapterbreak

A.0.4 Defined Modes

Within a formatted document there may appear complex constructs such as
tags, tuples, paths through a graph etc. In fact any meta-content that is to be
implied by the document. For this purpose 8 mode symbols are included. They
have no pre-defined intention but allow a state machine to derive its own context
sensitive information. For instance to enclose pure symbols and denote them
as meta-tags, to act as a delimiter between symbol strings or even to encode
higher level formating such as fonts and colours. If 8 modes are not sufficient
then they can be combined into sequences to give any number of modes.

Whatever context is created should also obey the rules of the commit and
rollback symbols. When the verbatim level is greater than zero then it is sug-
gested that this context be suppressed.

Mode

Ob { mode0
Oc { model
0d T mode2
Oe T mode3
0f f* mode4

10 © moded
11 % modeb6
12 7 mode?

A.0.5 Pure Symbols

The following sections list the pure symbols. They are divided up into similar
groups but from a state machine perspective have no meaning.

The standard digits for base 10 arithmetic.

Digits
13 0 0
le 9 9

The lowercase letters in alphabetical order. Note that the digits followed by
the first six lowercase letters lend themselves to hexadecimal numbering.

28 APPENDIX A. THE BASIC CHARACTER SET

Lowercase
1d a a
36 z =z

The corresponding uppercase letters.

Uppercase
37 o A
50 z Z

All standard forms of punctuation have been admitted. Care should be taken
to be explicit about use. Whereas the dash and hyphen may be interchanged in
some systems this is not the case here. The same is true of the apostrophe and
single right quote or indeed the distinction between left and right quotes. The
slash is distinct from its division counterpart.

Punctuation

51 * apostrophe

52 ¢ singlequoteleft
53 ’ singlequoteright
54 « doublequoteleft
55 » doublequoteright
56 (parenleft

57) parenright

58 [squarebracketleft
59] squarebracketright
5a { Dbraceleft

5b } braceright

5¢ (anglebracketleft
5d) anglebracketright
5¢ : colon

5f , comma

60 - dash

61 .. ellipsis

62 ! exclaim

63 . fullstop

64 « guillemetleft

65 » guillemetright

66 - hyphen

67 ? questionmark

68 ; semicolon

69 / slash

The text symbols are a collection of widely used symbols to enrich text. They
include most symbols that are encountered in the field of computing for back-

29

ward compatability. The illegible character denotes reporting a source character
that could not be read. The unprintable character on the other hand denotes a

character that is known but unavailable within this character set.

Symbol

6a _ underscore

6b & ampersand

6c * asterisk

6d @ at

6e \ backslash

6f ~ circumflex

70 s dollar

71 # numbersign

72 % percent

73 ' prime

74 doubleprime

75 ~ tilde

76 grave

77 | vertbar

78 t+ arrowup

79 + arrowdown

7a ¢ arrowupdown

b < arrowleft

7c - arrowright

7d < arrowleftright

7e < doublearrowleft
7t - doublearrowright
80 < doublearrowleftright
81 © copyright

82 ® registered

83 ¢ pilcrow

84 § sectionsign

85 © smiley

8 . Dbullet

87 1 illegiblecharacter
88 [] unprintablecharacter
89 & cardclub

8a 4 carddiamond

8b ¥ cardheart

8 & cardspade

The mathematical symbols enlarge on some of the preceeding symbols to
aid the clear exposition of arithmetic, logic amd set theory. Each of which have
useful notations for computing related problems. Symbols such as arrows can

be found earlier in the set.

30 APPENDIX A. THE BASIC CHARACTER SET

Math

8 + plus

8 - minus

8 + plusminus

90 ~ divisionslash
91 - dotproduct
92 x cartesianproduct
93 o composition
94 T topelement
95 1 bottomelement
96 < lessthan

97 > greaterthan
98 < lessthanequal
99 > greaterthanequal
9a <« muchless

9b > muchmore

9c = equal

9d =+ notequal

9¢ = identical

9f =~ almostequal
a0 o infinity

al — notsign

a2 F proves

a3 F models

a4 A conjunction
ab v disjunction
a6 N intersection
a7 U union

a8 c subset

a9 € element

aa @ emptyset

ab N naturals

ac Z integers

ad © rationals

ae R reals

af € complexfield
b0 v forall

bl 3 exists

The box symbols allow primitive formatting of boxes to produce tables etc.
In a monospace environment this can significantly aid readability without adding
too much complexity.

Box

b2 boxtopleft

b3 4 boxtopright

b4 < boxbottomright
b5 L boxbottomleft
b6 + boxcross

b7 + boxuppertsection
b8 L1 boxlowertsection
b9 | boxlefttsection
ba 4 boxrigthtsection
bb | boxvertical

bc — boxhorizontal

bd boxblankblock
be boxlightblock

bf boxfilledblock

31

32

APPENDIX A. THE BASIC CHARACTER SET

Bibliography

[1] “The Breathe System”, P. Seymour, 2008.

[2] “The U*-model”, P. Seymour, 2008.

[3] “A Pattern For Device Drivers”, P. Seymour, 2007.

[4] “Specifying Asynchronous Device Behaviour”, P. Seymour, 2007.

[5] “Statecharts: A Visual Formalism For Complex Systems”, D. Harel, 1987.

33

