
A Compendium Of Devies

Peter Seymour

14 April 2008

2

Prefae

This is a work in progress representing some devies that an be used with the

Breathe system. The aim of this book is to build a substantial desription of a

realisti working environment that is omplete whilst remaining open. Where

the need arises for new omponents and add-ons they an be doumented here

with referene to others and follow in a similar style. For instane the appendix

dealing with the Basi Charater Set forms a ommon basis for all general

purpose text devies. While there is no requirement to use the same haraters

throughout, learly it is bene�ial to do so.

Many frameworks and libraries have been reated with the goal of providing

an all enompassing environment, however, they unwittingly tie themselves to

existing protools and peuliarities of other systems. While this is perhaps

the most produtive way to proeed in the short-term it auses a situation of

onstant renewal and fragility. As older less relevant systems fall out of favour

so do the orresponding representations in whatever framework is being used.

This leads to the temptation to start afresh often then enompassing popular

features of the time and the proess repeats. Worse still is the inohereny of

popular implementations and the distress of having to hoose one over another

when what is required is an implementation of an often simple abstration. An

example is perhaps the use of databases. The programmer may have some data

and the only funtional requirement is for it to be persisted and then retrieved

in its original state. There is muh literature on di�erent storage and retrieval

tehniques so a solution an be expeted to exist. However, what is often found

is a vast array of di�erent on�gurations requiring mappings of data types,

destination parameters and large numbers of so alled potential �optimisations�.

Who demanded all these options? They must be overome at great expense to

ahieve something �ling abinets have been doing for signi�antly longer and

with more ease. Of ourse these options may be needed for other problems but

where is the solution to this simpler problem?

This ompendium has no impliit resistane to the same pitfalls but the

devies outlined attempt to revert bak to anonial representations that are

deemed worthy by their own merits. For example the simplest text devie just

onsumes a stream of haraters. By resisting the temptation to add support

for multiple harater sets or ontrol options for a �xed number of destination

devies this de�nition should have a substantial sense of longevity. It an be

argued that the hoie of harater set is arbitrary but that design was itself

3

4

subjet to the same proess. It is therefore hoped that by reapplying the same

priniple reursively a more oherent system evolves. Where neessary devies

an be built that handle a partiular piee of hardware or protool but the �rst

port of all should be a genuine abstration of the ore features. These an often

be found by looking in more aademi literature, however, it is important to

selet those whih show usefulness in pratial appliations. This dual style of

ombining that whih is fundamental with that whih is useful should preserve

the lifetime of these devies.

Contents

1 Devies as an Abstration 7

1.1 Introdution . 7

1.2 The Interfae . 7

1.3 Conurreny . 8

1.3.1 Register Synhronisation 8

1.3.2 Signals . 9

2 Stateharts 11

2.1 Introdution . 11

2.1.1 State Transitions . 11

2.1.2 State Clustering . 12

2.1.3 Default State . 12

2.1.4 State History . 13

2.1.5 Orthogonality . 13

2.1.6 Variables . 14

3 Desribing Devies 17

3.1 Synopsis . 17

3.2 Properties Table . 17

3.2.1 Class Name . 17

3.2.2 Usage . 18

3.2.3 Instanes/Bindings . 18

3.2.4 Signals . 18

3.2.5 Registers . 18

3.2.6 Examples . 18

3.3 Behaviour . 18

3.4 Implementation . 19

4 Common Utility Devies 21

4.1 Label . 21

4.2 External Devie . 21

4.3 Internal Devie . 22

5

6 CONTENTS

5 Text Devies 23

5.1 Rill . 23

5.2 Brill . 23

5.3 Brillio . 23

A The Basi Charater Set 25

A.0.1 State Mahine Control . 25

A.0.2 Verbatim Input . 26

A.0.3 Textual Formatting . 26

A.0.4 De�ned Modes . 27

A.0.5 Pure Symbols . 27

Chapter 1

Devies as an Abstration

1.1 Introdution

The Breathe system as outlined in [1℄ spei�es an abstrat system for omputing

that an support multiple models. A partiular model is shown in [2℄ whih

due to its historial nature in the development of the Breathe System ontains

a omplete desription of how models (U* or otherwise) interat with their

ontexts. The relevant setions are those on types, registers, synhronisation

and signals. To bring these models into the �real� world requires a further

abstration of these ontexts. Any model instane atually presents a series of

omputations to be performed as a single proess. These omputations an only

interat externally in two ways: by synhronisation of external registers and by

responding to signals. Any external proess represents a devie by providing

registers to bind to and/or issuing signals. A devie ould therefore represent

a piee of software suh as a terminal window or a physial devie suh as a

keyboard where the user is responsible for driving the proess.

1.2 The Interfae

When a model is desribed using registers and signals (as in the U*-model) it

impliitly de�nes an interfae. The interfae works two ways. Firstly, those

registers that are required for binding must exist externally else the model in-

stane will be left hanging. This implies the su�ient onditions for allowing

the instane to be viewed as well-posed. The seond side of the interfae is the

set of signals that the model instane is prepared to be interrupted by. This im-

plies a super-set of all signals that the model instane ould respond to. Should

a proess supply a signal that is not supported then the error lies within that

proess and not the model instane. Eah proess therefore de�nes whether the

model instane is su�ient for its purpose and an reat appropriately either

by not using that signal or delaring the whole system to be ill-posed.

7

8 CHAPTER 1. DEVICES AS AN ABSTRACTION

1.3 Conurreny

The system so far outlined onsists of a number of distint proesses that om-

muniate with a single instane of a Breathe model. Care must now be taken

to de�ne the rules of ommuniation preisely to avoid any problems ommon

in onurrent systems suh as invalid reads or writes.

1.3.1 Register Synhronisation

Communiation through synhronisation of registers is a form of mutual polling.

As the model instane synhronises-out to an external register it does so instan-

taneously. An external devie reading (polling) at any time prior to the syn-

hronisation sees the old value. Whereas at any time after it sees the new value.

For ompleteness any read ourring at the exat instant of synhronisation an

see either value. For synhronisation-in the roles are reversed but the priniples

remain the same. This ensures that neither proess sees an invalid value.

Whilst this is an elegant solution that ompletely deouples the model in-

stane from the devies it is wasteful of resoures in any real implementation.

Consider a lok that must update the register pratially ontinuously whether

a read is being made or not. With a little o-operation this situation an be

remedied.

If the devie is allowed to freeze the model instane then the path of exeution

may leave the model instane and be used to ontrol the devie. This does not

violate the model de�nition sine from its point of view there is no onept of

real-time only the transition from one state to the next. Ideally eah devie

ensures that under all irumstanes it will return in a short period of time as

it has stolen ontrol. This does not prelude a devie that an put the whole

system into hibernation e�etly freezing it for an inde�nite period of time. One

frozen the devie an perform enough operations to prepare the register values

and safely update or read them atomially. In this sense it has loked all the

registers it is responsible for. Notie that a deadlok situation is avoided sine

the model instane does not have the ability to lok anything. In the example

of a lok the devie only needs to operate when the urrent time is requested.

This feels like a simple funtion all, an idea that will now be expanded to give

a omplete piture of register ommuniation.

Under this sheme �ve lasses of operation an be modelled: trigger, send,

reeive, funtion (a ombination of a send and reeive) and property (send and

reeive of a homogeneous type). Taking an operation f , an argument a of type

A, a return value r of type R and a tag type trig (size 1), then the following

table summarises the available options.

Note that A or R may be strutural types allowing for multiple arguments

or return values and for the property A = R. These names an now be onsis-

tently used to desribe devie behaviour without expliitly mentioning low-level

registers and will be used throughout this book.

1.3. CONCURRENCY 9

Table 1.1: Operation Sheme

psuedo-ode register(s) new syntax

f() �f � ← f : trig trig f

f(a) �f � ← f : A send f : A

r = f() �f � → f : R rev f : R

r = f(a)
�fsend� ← f : A
�frecv� → f : R

fun f : A→ R

r = f

f = a
�f � ↔ f : A prop f : A

1.3.2 Signals

Communiation in the form of signals is slightly more ompliated. A simple

proposal is to queue all signals in the order they our. Potentially two or more

devies ould issue signals at the same instant. These an appear on the queue

in any order whether it is preditable or not. When the model instane yields

all aumulated signals are inserted into the yielding signal in hronologial

order. This ensures that eah proess will have its signals proessed in order

but no order is guaranteed between devies. This is desirable as eah proess

is made independent of the others but internally onsistent. Whilst the model

instane proesses these inserted signals more may arrive and are themselves

queued in the reently emptied queue. This maintains the requirement that

only a �nite number of signals be inserted and prevents starvation whereby the

model instane is onstantly responding to signals.

The model de�niton leaves open the possibility of using a di�erent strategy

sine it requires no stronger a ondition than that a �nite number of signals be

inserted. Any further onstraints or strategies are an external onern and a

master devie an be used as a gateway for all other devies to ommuniate

with the model instane. This allows for more inventive strategies that make

sense in the world of the devies. For instane a `kill' signal from any devie

an be pushed in front of all other signals. Communiation between devies and

the master devie are not disussed here sine they do not diretly involve the

model. That said the master should be an unblokable proess else any devie

an bring down the whole system. This is easily ensured by using asynhronous

ommuniation at the devie level.

For the purposes of this book a master devie approah will be used. To

all intents and purposes it an be thought of as part of the de�nition of the

model. This master devie proess then de�nes the seond side of the external

interfae and an take on various forms. One might allow the model to sit

omfortably in a partiular operating system responding to typial `exeute' or

`kill' signals. Another might allow the model to exist on some ad-ho piee of

hardware. All register binding by a model instane will now be with the master

devie whih an imitate the union of all the devies it represents and even fake

10 CHAPTER 1. DEVICES AS AN ABSTRACTION

others aordingly. The typial system is shown in �gure 1.1.

Figure 1.1: Master devie based system

The alluded to `other ommuniation' is a hint that asynhronous ommu-

niation be used. This adds a high level of fault tolerane sine devies an

fail safely and the master devie an deal with them, say by restarting them.

The master devie may allow ertain devies, suh as the lok, to work syn-

hronously where it trusts them or it may simply implement that funtionality

itself. Third party devies an be supplied at a later time and easily integrated

into the system by working with the master devie.

Chapter 2

Stateharts

2.1 Introdution

Stateharts were introdued by David Harel as an attempt to simplify the formal

spei�ation of state mahines. Devies an onveniently be viewed as state

mahines where the events arise through register synhronisation. For a better

introdution to stateharts please see [5℄ but this hapter will summarise many

of the features used for devie spei�ations. The basi priniple is to view states

hierarhially whih prevents an explosion of states and allows re-use of ommon

sub-systems. The method is not ompletely spei�ed and allows some degree of

extension. One suh extension used here is the introdution of variables whih

allow �nite state mahines to over many more devies than would otherwise

be possible. Imagine a simple ounter devie whih annot be desribed using

�nite states without a variable.

2.1.1 State Transitions

States are depited as retangles with rounded orners and may have a name

indiated at the top left. A transition from one state to another is labelled by

an event and optionally a ondition and/or ation. The transition and ation

only take plae if the ondition is true otherwise no state hange is observed.

Figure 2.1: Transition example

In this example a transition ours from state A to state B and the ation

f() performed when event α ours and the onditon C is true. The form of the

ondition is open so it an refer to states in other parts of the system, variables

11

12 CHAPTER 2. STATECHARTS

or even external onditions. The ation an alter the state mahine or it an

have some external e�et.

2.1.2 State Clustering

Clustering states into larger superstates allows a system to be broken down

more naturally and prevents dupliation of state transitions. Any transition

from a superstate applies to all substates. A transition into a superstate auses

the system to hoose one of the substates whih is explained over the next few

setions. Clustering an our at any level.

Figure 2.2: Clustering example

This example shows states A and B being lustered. When event β ours

then the system moves into state C if it was previously in state A or B. The

event α is a usual transition from state A to B. The lustered state an be given

a name and re-used in other stateharts. A transition oming into a superstate

an ross the boundary and point diretly at one of the substates. For instane

diretly from C to A.

2.1.3 Default State

A superstate may speify a default substate to be entered whenever the su-

perstate is entered. This is shown by an arrow emanating from a dot. Any

transition leading to the edge of the superstate auses the system to enter the

default substate.

Figure 2.3: Default state example

2.1. INTRODUCTION 13

2.1.4 State History

As an extension to the default substate is the onept of state history. One

a lustered state is exited its history remembers the last substate and on re-

entry goes diretly into that state. A default state is still required for the �rst

entrane.

Figure 2.4: State history example

As shown the history is depited by the letter `H' in a irle. The �rst

entrane to the lustered state goes to A but subsequent entranes revert to the

last used substate.

2.1.5 Orthogonality

Stateharts have a powerful mehanism to avoid state explosion by allowing

states to be onstruted using an orthogonal produt. By deomposing a state

into orthogonal lustered states allows produt ombinations to be represented

anonially. The following example has a superstate with left and right ompo-

nent denoted L and R respetively. The L omponent takes on a state A or B

whilst the R omponent simultaneously takes on a state C or D. This produt

state transitions by looking at the transitions of eah omponent.

Figure 2.5: Orthogonality example

The next diagram is the equivalent state system but without using orthog-

onality.

14 CHAPTER 2. STATECHARTS

Figure 2.6: State explosion

Notie that the orthogonal state 〈L,R〉 requires a default state for eah

omponent. By using onditions that refer to orthogonal omponents allows

for very ompliated state systems to be modelled. For instane γ ould be

replaed by γ(L in A) meaning the R omponent only hanges from C to D

when L is in A. A state history an be used on any omponent and any number

of omponents may be used.

2.1.6 Variables

Variables have been added as an extension to the original stateharts. These

are introdued as an ellipse ontaining the variable name and its type. The

variable then has a state that an be updated using ations and referred to in

onditions.

Figure 2.7: Variables example

This example shows a ounter (natural number) that an be inreased or

dereased by one without going below zero. Initially it is set to zero.

A seond use for variables is to allow information to be passed to the state

mahine (devie) by the Breathe model. This is aheived by binding the state-

hart variable to one of the registers that onstitute part of the devie's interfae.

Changes to one are instantly re�eted in the other.

2.1. INTRODUCTION 15

Figure 2.8: Variable binding example

Here the model register now of strutural type time (omposed of hours,

minutes and seonds) is bound to three variables in the state mahine.

16 CHAPTER 2. STATECHARTS

Chapter 3

Desribing Devies

This hapter gives a guide to desribing devies and standardises muh of the

format. Eah desription should inlude the ore features that are ommon

aross all devies and allow them to work onsistently with eah other. These

will be displayed in a table near the beginning of the desription and allow a

quik overview to be found. Where names and texts are used it is assumed these

are all written with the basi harater set as set out in the appendix.

Devies an be logially grouped into families of similar domains. For in-

stane output devies di�er from storage devies. This grouping an be repre-

sented by hapters and setions.

Many aspets of devies an be olleted together to form sub-devies. The

purpose of these sub-devies is to allow easy omposition of bigger devies. Suh

devies are referred to as utility devies.

For a learer exposition of large sale omputing systems using devies see

[1℄ whih introdues some terminology used here.

3.1 Synopsis

The synopsis introdues the devie and its aims. It allows the reader to very

quikly see the abstrations and familiar analogies.

3.2 Properties Table

The properties of a devie are laid out in a single table and should inlude at

least the following:

3.2.1 Class Name

The name assoiated with this desription. All devie instanes are instanes

of a ertain lass and although they may have unique names of their own they

share their lass.

17

18 CHAPTER 3. DESCRIBING DEVICES

3.2.2 Usage

This will either be external, internal or utility and determines how the devie

will be used. External and internal devies are overed in more detail in [1℄.

Utility devies an be used to import groups of registers and behaviour into

these devie desriptions.

3.2.3 Instanes/Bindings

For an external devie there will be one distint devie instane for eah model

instane. For an internal devie there will be one shared devie instane with

multiple opies of the register interfae. The number of instanes or bindings

available is determined by this �eld. For an internal devie this �eld has no

meaning,

3.2.4 Signals

A devie may issues signals to one or all of its bound model instanes. The

omplete list of signals are listed in this �eld.

3.2.5 Registers

The most important part of the desription is the register interfae. Using the

operations from Figure 1.1 is the simplest way to explain what registers are

available and their intended use. To those operations are added a ouple more

for handling utility devies.

The util f : D operation means to introdue all the registers of the utility

devie D but as a sub-devie alled f . There may be arbitrary levels of nesting

and the full sequene of sub-devie names must be used to refer to a register.

The incl : D operation introdues a opy of the sub-devieD at the top-level

so the register names of D appear diretly.

3.2.6 Examples

Where examples an be given then they should be listed.

3.3 Behaviour

The behaviour of a devie allows a model instane to know what to expet

when register synhronisation ours and when signals may arrive. Ideally this

an be learly demonstrated by a statehart aompanying text, however, other

methods may be more appropriate.

3.4. IMPLEMENTATION 19

3.4 Implementation

Oasionally it is useful to inlude notes about partiular implementation de-

tails.

20 CHAPTER 3. DESCRIBING DEVICES

Chapter 4

Common Utility Devies

The devies in this hapter are all utility devies that may be useful aross

many domains. Most importantly are the base lasses for external and internal

devies. Using these allows all devies to have some ommon features.

The Basi Charater Set is used throughout these devies as the default

method of handling text. This is denoted by the following type de�nition:

bhar = 192

4.1 Label

A label devie represents a possibly empty sequene of read-only haraters. It

maintains an internal ursor to denote the urrent reading point whih starts at

the beginning of the haraters. Reading a harater advanes the ursor unless

it is at the end in whih ase � is read and the ursor does not move. There is

a trigger to return the ursor to the start of the haraters.

lass name label

usage utility

signals

registers rev get:bhar

trig reset

4.2 External Devie

An external devie is any devie that roughly orresponds to a physial devie.

To avoid ontention only one model instane may bind to an external devie

instane. For example it may be the base lass of monitors, printers, operating

systems and terminal windows.

21

22 CHAPTER 4. COMMON UTILITY DEVICES

lass name external devie

usage utility

signals kill

registers util name:label

4.3 Internal Devie

An internal devie is more transient than an external devie and is not on-

strained by ontention issues. It an have multiple model isntanes bound to it

(although eah has its own opy of the registers and signal hannel). For example

it may be the base lass of a gateway to an external devie or a ommuniation

pipe.

lass name internal devie

usage utility

signals

registers util name:label

Chapter 5

Text Devies

This hapter deals with some ommon text devies.

5.1 Rill

Rill is the simplest of all text devies aepting as a single stream of haraters.

5.2 Brill

5.3 Brillio

23

24 CHAPTER 5. TEXT DEVICES

Appendix A

The Basi Charater Set

This setion details the Basi Charater Set. It onsists of 192 harater symbols

as displayed below.

���������	
��Æ�����������������

 !"#$%&'()*+,-./0123456789:;<=>?

�ABCDEFGHIJKLMNOPQRSTUVWXYZ[\℄^_

`abdefghijklmnopqrstuvwxyz{|}~�

���������������Ǳ����������������

 ¡¢£¤¥�§¨©ª«¬®¯°±²³´µ¶·¸¹º»¼½¾¿

It is intentional that all haraters have a de�nite symbol even if they imply

some form of formatting. This allows the set to be viewed as a set of purely

graphial symbols with no meaning attahed if neessary. On the other hand

the set is laid out it a way to form an alphabet of input symbols to a lass

of state mahines. It is this seond meaning that is disussed more fully here,

however, the �rst use is not without its merits.

The input symbols are hierarhial with the earlier ones taking preedene

over the later ones. Eah symbol then may have a di�erent meaning depending

on its ontext, namely the symbols that preede it.

A.0.1 State Mahine Control

At the top level are two ontrol symbols whih have a universal meaning aross

state mahines and enable some form of transation management. The �rst

symbol is intended to perform a ommit suh that all symbols preeeding it

are �rmly ommitted to. After a ommit the state mahine is returned to its

initial state. This sits at the top of the hierarhy sine it e�etively overrides all

other behaviours for instane any formatting ontrol will be reset. The seond

symbol rollbak will return all behaviours to their initial state and ideally remove

all symbols that were input to the mahine sine the last ommit or start of

the mahine if no ommits have been made. This is a very important symbol

25

26 APPENDIX A. THE BASIC CHARACTER SET

allowing the state mahine to be put into a known state before proeeding

therefore removing ontext.

Control

00 � ommit

01 � rollbak

When haraters are used as output symbols then � an denote a null har-

ater.

A.0.2 Verbatim Input

At the next highest level is ontrol for verbatim output. This permits any state

mahine spei� proessing to be overridden for all symbols ouring between

losed pairs of verbatim brakets. This onept an be repeated to any level

allowing input to be nested. The level of this nesting is the verbatim level. In

essense this marks that a string of symbols should not be the onern of this

state mahine but be treated purely as a string of symbols. Perhaps this string is

to be delegated to another more speialised state mahine. This proess allows

arbitrary nesting of strings in meta-ontent, meta-meta-ontent et.

Should the verbatim brakets beome ill-formed i.e. more losing brakets

are seen than opening ones then this is an error state to be handled however a

mahine wishes.

Sine the ommit and rollbak symbols preeed these brakets, they will

return the verbatim level to zero for the start of the next transation.

Verbatim

02 � verbbegin

03 � verbend

A.0.3 Textual Formatting

Now that the state mahine spei� symbols have been overed, the more fa-

miliar formatting symbols appear. At this level the input symbols are to be

treated perhaps as text in a doument. These formatting symbols represent

the usual methods to break a doument down into manageable omponents of

words, lines, paragraphs et. How this formatting is aheived is spei� to the

target mahine but it should be noted that there is a blank symbol near the end

of the set. This an be used to ahieve white spae without resorting to more

ompliated methods.

Formatting should restore itself to an initial state after a ommit or rollbak

symbol. When the verbatim level is greater than zero all formatting should be

turned o� for symbols lower in the hierarhy than the ontrol and verbatim.

Sine all haraters have a graphial representation this an be easily ahieved.

27

Format

04 � spae

05 � tab

06 � linebreak

07 � parabreak

08 � pagebreak

09 	 setionbreak

0a
 hapterbreak

A.0.4 De�ned Modes

Within a formatted doument there may appear omplex onstruts suh as

tags, tuples, paths through a graph et. In fat any meta-ontent that is to be

implied by the doument. For this purpose 8 mode symbols are inluded. They

have no pre-de�ned intention but allow a state mahine to derive its own ontext

sensitive information. For instane to enlose pure symbols and denote them

as meta-tags, to at as a delimiter between symbol strings or even to enode

higher level formating suh as fonts and olours. If 8 modes are not su�ient

then they an be ombined into sequenes to give any number of modes.

Whatever ontext is reated should also obey the rules of the ommit and

rollbak symbols. When the verbatim level is greater than zero then it is sug-

gested that this ontext be suppressed.

Mode

0b � mode0

0 � mode1

0d mode2

0e Æ mode3

0f � mode4

10 � mode5

11 � mode6

12 � mode7

A.0.5 Pure Symbols

The following setions list the pure symbols. They are divided up into similar

groups but from a state mahine perspetive have no meaning.

The standard digits for base 10 arithmeti.

Digits

13 � 0

.

.

.

.

.

.

.

.

.

1 � 9

The lowerase letters in alphabetial order. Note that the digits followed by

the �rst six lowerase letters lend themselves to hexadeimal numbering.

28 APPENDIX A. THE BASIC CHARACTER SET

Lowerase

1d � a

.

.

.

.

.

.

.

.

.

36 6 z

The orresponding upperase letters.

Upperase

37 7 A

.

.

.

.

.

.

.

.

.

50 P Z

All standard forms of puntuation have been admitted. Care should be taken

to be expliit about use. Whereas the dash and hyphen may be interhanged in

some systems this is not the ase here. The same is true of the apostrophe and

single right quote or indeed the distintion between left and right quotes. The

slash is distint from its division ounterpart.

Puntuation

51 Q apostrophe

52 R singlequoteleft

53 S singlequoteright

54 T doublequoteleft

55 U doublequoteright

56 V parenleft

57 W parenright

58 X squarebraketleft

59 Y squarebraketright

5a Z braeleft

5b [braeright

5 \ anglebraketleft

5d ℄ anglebraketright

5e ^ olon

5f _ omma

60 ` dash

61 a ellipsis

62 b exlaim

63 fullstop

64 d guillemetleft

65 e guillemetright

66 f hyphen

67 g questionmark

68 h semiolon

69 i slash

The text symbols are a olletion of widely used symbols to enrih text. They

inlude most symbols that are enountered in the �eld of omputing for bak-

29

ward ompatability. The illegible harater denotes reporting a soure harater

that ould not be read. The unprintable harater on the other hand denotes a

harater that is known but unavailable within this harater set.

Symbol

6a j undersore

6b k ampersand

6 l asterisk

6d m at

6e n bakslash

6f o irum�ex

70 p dollar

71 q numbersign

72 r perent

73 s prime

74 t doubleprime

75 u tilde

76 v grave

77 w vertbar

78 x arrowup

79 y arrowdown

7a z arrowupdown

7b { arrowleft

7 | arrowright

7d } arrowleftright

7e ~ doublearrowleft

7f � doublearrowright

80 � doublearrowleftright

81 � opyright

82 � registered

83 � pilrow

84 � setionsign

85 � smiley

86 � bullet

87 � illegibleharater

88 � unprintableharater

89 � ardlub

8a � arddiamond

8b � ardheart

8 � ardspade

The mathematial symbols enlarge on some of the preeeding symbols to

aid the lear exposition of arithmeti, logi amd set theory. Eah of whih have

useful notations for omputing related problems. Symbols suh as arrows an

be found earlier in the set.

30 APPENDIX A. THE BASIC CHARACTER SET

Math

8d � plus

8e � minus

8f Ǳ plusminus

90 � divisionslash

91 � dotprodut

92 � artesianprodut

93 � omposition

94 � topelement

95 � bottomelement

96 � lessthan

97 � greaterthan

98 � lessthanequal

99 � greaterthanequal

9a � muhless

9b � muhmore

9 � equal

9d � notequal

9e � idential

9f � almostequal

a0 in�nity

a1 ¡ notsign

a2 ¢ proves

a3 £ models

a4 ¤ onjuntion

a5 ¥ disjuntion

a6 � intersetion

a7 § union

a8 ¨ subset

a9 © element

aa ª emptyset

ab « naturals

a ¬ integers

ad rationals

ae ® reals

af ¯ omplex�eld

b0 ° forall

b1 ± exists

The box symbols allow primitive formatting of boxes to produe tables et.

In a monospae environment this an signi�antly aid readability without adding

too muh omplexity.

31

Box

b2 ² boxtopleft

b3 ³ boxtopright

b4 ´ boxbottomright

b5 µ boxbottomleft

b6 ¶ boxross

b7 · boxuppertsetion

b8 ¸ boxlowertsetion

b9 ¹ boxlefttsetion

ba º boxrigthtsetion

bb » boxvertial

b ¼ boxhorizontal

bd ½ boxblankblok

be ¾ boxlightblok

bf ¿ box�lledblok

32 APPENDIX A. THE BASIC CHARACTER SET

Bibliography

[1℄ �The Breathe System�, P. Seymour, 2008.

[2℄ �The U*-model�, P. Seymour, 2008.

[3℄ �A Pattern For Devie Drivers�, P. Seymour, 2007.

[4℄ �Speifying Asynhronous Devie Behaviour�, P. Seymour, 2007.

[5℄ �Stateharts: A Visual Formalism For Complex Systems�, D. Harel, 1987.

33

