
A Pattern For Device Drivers

Peter Seymour

peteralanseymour@hotmail.com

February 9, 2020

1 Wait-free Message Passing To Devices

When registers of the Breathe system are synchronised the single path of exe-
cution of the runtime moves into an external module. This creates a problem
should the external module fail or take a long time to perform its task. If the
runtime is simulating threads then all threads will be blocked which would im-
pose unacceptable overheads and fragility especially as the number of external
modules increases. The system specification implies that all synchronisations
must complete. Some modules perform very simple tasks which in their nature
take only a small bounded amount of time and pose no problems. However, for
arbitrary devices such as writing to a concurrently running window or accessing
a network this is not the case. Below I outline a simple pattern that all modules
can follow to ensure that in the worst case a known and configurable amount of
time is spent synchronising.

2 The Pattern

The device runs concurrently to the runtime and is started when the module
(driver) is loaded. Should the device fail or block the runtime is unaffected.
A message queue is established to asynchronously send messages to the device.
Message delivery is not guaranteed but further higher level protocols can be
established with messages coming back from the device on another queue. This
is in keeping with the specification that views registers as monitored by the
outside world only. Ideally this model would be sufficient since it takes only a
bounded amount of time to post the message. However, that is only true if the
queue is allowed to grow indefinitely which is not a desirable property. Should
the device be particularly slow some mechanism to alert the producer is required
to throttle its behavour and redirect it to more useful tasks,

Four registers are created spare, timeout, increase and signal. The first
three are non-negative integers and the last a boolean value.

Initially the queue has a non-zero size and timeout configured. The register
spare is read only and contains the number of spare slots in the message queue.
At any time after synchronising to this register but before posting a message

1



more slots may become empty but never less. The register timeout contains
the maximum timeout period which may be updated. The register increase
is used to increase the maximum queue size. Notice that once more slots are
allocated they cannot be reclaimed. Finally the signal register contains a
read/write status flag indicating whether a signal will be generated if a message
is dropped. Initially this is set to false.

The queue is implemented as in [1] which leads to the following behaviour:

Entry Max Wait Exit
Spare > 0 O(1) Success
Spare = 0 O(timeout) Success

Failure

Here success and failure refer only to the act of posting a message and say
nothing of its receipt. There are three key use cases for this system. Firstly a
simple application can blindly send messages to the device. In the worst case the
queue fills up and messages are dropped. The cost of the dropped messages is
the runtime blocking for a period equal to timeout per message. In the second
case the application can read spare and determine if posting a message will
take almost no time or possibly fail. If failure is possible then the application
can avoid posting the message and in turn avoid the timeout penalty. Ideally
the application will be smart and either increase the queue size, throttle itself
yielding to other processes or do other work itself. The third case is similar
except that instead of reading spare the signal is activated and messages are
posted. Should the queue fill then a message will be dropped but the application
will be alerted via the signal and can take action. Either resending or adapting
the queue making it larger for future use.

The control flow for the second case is shown below:

2



Figure 1: Control flow passing a message to a device

3 Conclusion

The pattern presented can be widely used and gives wait-free behaviour but
allows smart applications to monitor device communication and take action.
The default configuration allows drivers to be created for simple use so long
as dropped messages are tolerable. In other cases applications can take pre-
emptive or remedial action to acheive efficient long-term stability between itself
and external devices.

References

[1] “An Efficient Wait-free Queue Implementation”, P. Seymour, 2007.

3


