
QuabeC

Peter Seymour

2 March 2009

Last Updated: 15 July 2009

1 Introduction

QuabeC stands for Querying and updating a b edges with Constraints where
a b refers to a general asymmetric 2-place relation: there is an edge from a

to b.
The system provides a multi-versioned external storage mechanism. The un-

derlying data structure is intentionally simple but more complicated structures
can be built on top of it yielding a rich modelling platform.

2 Data Structure

Data is stored as sequences of graphs each consisting of directed edges over an
infinitely countable set of nodes called atoms referred to by A. Atoms are either
named by an arbitrary length string over a fixed alphabet or are anonymous.
There is a bijection between the set of all strings and the named atoms so that
where an atom has a name it is unique amongst all the other names. Similarly
there is a bijection between the anonymous atoms and the natural numbers.
These two mappings induce a total order by placing anonymous atoms in order
before the named atoms taken in lexicographic order. Each data graph is a
model for a first-order language where the atoms are the domain and the edges
define a relation. It is helpful to consider a concrete model of each graph as a
subset of all the edges, written G ⊆ A× A. Then in terms of the language:

G � a b⇔ (a, b) ∈ G

It is important to note that it is the graph edges which define the state
since the nodes are universally fixed across all graphs. A sequence of graphs
represents an enumeration of its versions. Multiple sequences can be used to
permit distinct datasets and branching. These will be written as ∅, G1, G2,
Where ∅ denotes the empty graph from which all other graphs will evolve.

1

3 Query Languange

To describe this structure is an accompanying predicate calculus LQ which
allows queries over the data structure. A query is a well-formed formula whose
result depends on the number of free variables present. If there are no free
variables in the query (a closed formula) then it is either true or false. If there
is one free variable then the result is the set containing all atoms which satisfy
the formula. Where there are two or more free variables the result is a set of
tuples. The free variables in a formula are ordered so it is always possible to
define such tuples.

3.1 Well-formed Formulæ

The alphabet of symbols is as follow:

x, x1, x2, . . . ; a, a1, a2, . . . ; 1̂, 2̂, . . . ; . . . variables
“a”, “ab”, . . . constants
=, <,@e,Λe

a1
,Λe

a2
, . . . ;φe, φe

1, φ
e
2, . . . ;ϕ

e, ϕe
1, ϕ

e
2, . . . ; . . . predicates

(,), , punctuation
¬,∧ connectives
∀ quantifier

Well formed formulæ (abrreviated to wff) are built-up from atomic formulæ
using the connectives. Variables range over the atoms and occur in a wff either
bound or free. Bound variables must fall under the scope of a quantifier. The
free variables are labelled by n̂ to simplify binding rules. The constants denote
specific named atoms.

3.1.1 Construction

A term is defined by:

1. A variable is a term.

2. A constant is a term.

An atomic formula is defined by:

1. If φe is a predicate and t1, . . . , te are terms then φe(t1, . . . , te) is an atomic
formula.

2. If x and y are terms then x = y is an atomic formula.

3. If x and y are terms then x < y is an atomic formula.

4. If p and t1, . . . , te are terms then @e(p, t1, . . . , te) is an atomic formula.

2

A wff is defined by:

1. All atomic forumulæ are wff s.

2. If A and B are wff s then (¬A),(A ∧B) and (∀x)A are wff s where x is
any variable.

3. The set of wff s is generated from the above.

3.1.2 Custom Predicates

A wff can be considered as a predicate taking as many arguments as it has
distinct free variables. If a wff has no free variables then it is closed. The
superscript e on a predicate letter denotes the number of arguments that the
predicate accepts. This can be thought of as the type of the predicate or as we
shall see later the type of a set-abstract. For example:

φ2 = (1̂ 2̂) ∧ (1̂ “quabec”)

The free variables can be bound by application as in:

φ(x, y) = (x y) ∧ (x “quabec”)

3.1.3 Atom Ordering

The pre-defined 2-place predicate < orders the atoms such that anonymous
atoms appear before named atoms and named atoms appear in lexicographic
order. Anonymous atoms are unordered in LQ even though the model provides
a total order. The equality predicate = behaves as expected.

3.1.4 Interpreter

The interpreter predicate @e for e ≥ 0 interprets the name of its first argument
as a wff with the remaining e arguments (if any) bound to the free variables.
This is always false for anonymous atoms, named atoms that do not denote a
wff or misapplication of arguments.

3.2 Simulataneous Satisfaction

For each atom F there is a predicate Λe
F which uses F to define a range of atoms

to be simultaneously interpreted. If F is a named atom whose name denotes a
wff of exactly one free variable then Λe

F is evaluated as

Λe
F (p)(x

e) = (∀p)(F (p)→ @e(p, xe))

Should F not be of the specified form the predicate is false.

3

3.2.1 Truth

Any closed wff consitutes a truth statement since it can be evaluated as true
or false for any given model G.

G � φ

3.2.2 Set Abstraction

Reference to a subset of the atoms is achieved using a non-closed wff. Each
combination of atoms satisfying the predicate forms a tuple. The full set of
these tuples is the set-abstract.

Sφe = {xe|φe(xe)}

Where xe is either a tuple of e elements or a single variable if e = 1. These
set-abstracts are unordered in LQ but are ordered in the model.

3.3 Syntactic Extensions

The following set of definitions are syntactic and allow a more natural construc-
tion of wff. The use of the superscript e allows predicates and the set-abstracts
they define to have a definite type. Certain pieces of syntax rely on types match-
ing so variables can also be typed to make this explicit. This typing of variables
is not part of the syntax so x1 should be read as x and xe as (x1, . . . , xe). Where
types are obvious they will be omitted.

To ease clarity predicates can be defined outside of any wff. When they
are used in a wff they would be applied by substitution with all free variables
replaced by bound terms. For instance:

φ = ¬(1̂ < 2̂)

φ(“a”, 1̂)

When defining a predicate the use of the enumerated free variables can be
replaced by an explicit argument list. Similarly the result of the query is the set
of all atom tuples satisfying the final wff. The above exmple can be re-written
as:

pred φ(x, y) = ¬(x < y)

{x|φ(“a”, x)}

Variables can similarly be declared for simple substitution in the resulting wff.

var t = “a”

pred φ(x, y) = ¬(x < y)

{x|φ(t, x)}

4

Finally set-abstracts can be brought out.

var t = “a”

pred φ(x, y) = ¬(x < y)

set S = {x|φ(t, x)}

S

3.3.1 Definitions

The following are to be taken as equivalent atomic formulæ:
x 6= y ≡ ¬(x = y)
x > y ≡ y < x
x ≤ y ≡ ¬(y < x)
x ≥ y ≡ ¬(x < y)
x ∼ y ≡ ¬(y < x) ∧ ¬(x < y)

xe = ye ≡ (x1 = y1) ∧ . . .
xe 6= ye ≡ (x1 6= y1) ∨ . . .
xe < ye ≡ (x1 < y1) ∨ ((x1 = y1) ∧ ((x2 < y2) ∨ . . .))
φe(xe) ≡ φe(x1, . . . , xe)

⊤ ≡ “0” < “1”
⊥ ≡ ¬⊤

@p(xe) ≡ @(p, x1, . . . , xe)

The following are to be taken as equivalent wff s:

A ∨B ≡ ¬(¬A ∧ ¬B)
A → B ≡ ¬A ∨B

A ← B ≡ B → A

A ↔ B ≡ (A → B) ∧ (A ← B)
(∃x)A ≡ ¬(∀x)¬A
(∀xe)A ≡ (∀x1) . . . (∀xe)A
(∃xe)A ≡ (∃x1) . . . (∃xe)A

The following are wff s defined by set-abstracts:

5

Sφe ≡ {xe|φ(xe)}
xe ∈ Sφe ≡ φe(xe)
xe /∈ Sφe ≡ ¬φe(xe)

Sφe ⊆ Sϕe ≡ (∀xe)(φe → ϕe)
Sφe ⊇ Sϕe ≡ (∀xe)(φe ← ϕe)
Sφe = Sϕe ≡ (∀xe)(φe ↔ ϕe)
Sφe ∩ Sϕe ≡ {xe|φe ∧ ϕe}
Sφe ∪ Sϕe ≡ {xe|φe ∨ ϕe}
Sφe \ Sϕe ≡ {xe|φe ∧ ¬ϕe}

∅e ≡ {xe|⊥}
A

e ≡ {xe|⊤}
{ae} ≡ {xe|xe = ae}

{ae, be, . . .} ≡ {xe|xe = ae ∨ xe = be ∨ . . .}

3.3.2 Reusable Queries

Consider a predicate that determines whether an atom is anonymous, x < “”.

var isanon = “1̂ < “””

set S = {x|@isanon(x)}

S

This works precisely because the atoms are immutable so the reference in the
var clause can hold across queries.

Alternatively useful queries can be stored as part of the data structure,
“isanon” “1̂ < “””. Traditional databases offer views which can also be
replicated by applying @ to an atom representing a set-abstract. The @ predi-
cate acts as a very powerful interpreter of the query language.

In fact it can be argued that it is too powerful since it can effectively build
uncomputable sets. This is the motivation for introducing simultaneous sat-
isfaction as a weaker replacement. Any predicate determining formulæ to be
interpreted will either generate a finite or infinte set. In the first case each case
can be checked whereas in the latter the satisfaction must fail since there will
always be one failing formula. If there were not a failing formula we would have
computed an infinte set of valid formulæ in a single wff which cannot be the
case.

4 Higher Order Relations

Since having only a 2-place relation is too restrictive for many uses we propose
here a general n-place relation as a further extension. Given a and b such that
a b we write r : 〈a b〉 ≡ a r∧r b and 〈a b〉 ≡ (∃r)r : 〈a b〉 for some atom
r. The intention is to let r be anonymous and represent the relation between a
and b so it can in turn be used within other relations. Taking this relation as a
base we can specify high order relations as follows:

6

rn : . . . r1 : 〈an . . . a1〉 ≡ rn : 〈an rn−1〉 ∧ rn−1 : . . . r1 : 〈an−1 . . . a1〉

rn−1 : . . . r1 : 〈an . . . a1〉 ≡ (∃rn)rn : . . . r1 : 〈an . . . a1〉

. . .

〈an . . . a1〉 ≡ (∃rn) . . . (∃r1)rn : . . . r1 : 〈an . . . a1〉

As a further extension whenever we see such a relation used in a position
where an atom would be expected as in φ(r) then we write:

φ(〈a b〉) ≡ (∃r)r : 〈a b〉 ∧ φ(r)

Analogous forms apply for nested structures.
One way to view this structure is as special form of tree over the atoms where

fresh anonymous atoms are introduced at the nodes and the root node is the
representative. Any tree structure can be modelled since there is no problem
with nesting these n-place relations. As an example 〈〈a b〉 〈c d〉〉 is perfectly
legal.

a b c d

The special syntax 〈a b . . .〉 represents a degenerate tree called a list.

a

b

5 Natural Form

Putting together all the pieces allows for a very natural data form. Each concept
in the logical model should have an associated atom. Sometimes it makes sense
to name the concept but in other cases a concept is more sensibly referenced by
its position in the topology.

The concept of “mass” for instance can easily be named but an instance of
a more general concept for example a particular person may not have a unique
name. In the latter case an anonymous atom represents the concept and its

7

relations define it uniquely by imbuing it with properties such as age etc. This
doesn’t mean there is no concept of identity rather there is no named reference
to it.

We can represent a class as an atom and have the concept of class member-
ship as another. So we could use an atom “in” for membership and another for
the class as in “People”. Then for x to be a person the following must hold:

〈x “in” “People”〉

The membership concept is resuable as in 〈x “in” “Cats”〉 We can enquire
about all people using a set abstract {x|〈x “in” “People”〉}. People can have
properties such as age 〈x “hasage” “30”〉. It might be necessary to find all
people under a certain age. This can be accomplished by establishing a numeric
type within the current structure. If it is to be used in comparisons then it must
obey <. This does not naturally occur but [1] gives a series of numeric types
and composite types that will obey <. In which case assume 30 is in such a
form then all young people is given by:

{(x, n)|〈x “in” “People”〉 ∧ 〈x “hasage” n〉 ∧ n < 30}

It’s worth noting that if 〈a b c〉 and 〈a b〉 hold then {x|〈a x〉} = {〈b c〉, b}. This
logically makes sense when viewed as predicates on a but might not be intended.
One way to differentiate is to see that 〈b c〉 is anonymous whereas b is possibly
not.

6 Update Language

The query language views the data structure as static and produces no side
effects. This is desirable especially when the @ predicate can mimic dynamic
behaviour. However, at some point data needs to be created and changed. This
is achieved using a simple update language. Since there are only atoms and edges
it is relatively simple. If a concept is logically mutable it should be an atom in
its own right referencing its state. For example moving from 〈a “hasprop” b1〉
to 〈a “hasprop” b2〉.

An update works on edges by specifying what should hold after the update
has been made irrespective of what held before. This is accomplished in a similar
manner to set abstraction except the selection is over relations not atoms. To
produce an edge between two atoms we use the following primitive edge set
statement.

[a b|⊤]

Similarly to remove a relation [¬a b|⊤]. As a language extension [φ|⊤] can
be written as [φ]. The statement on the right-hand side is any wff from LQ.
The statement on the left-hand side is composed of atoms, ∧, ¬, edge sets and
anonymous-selection. Any of the extensions to LQ that use these components

8

may also be considered valid. The interpretation of ∧ is that both statements
to its left and right will be satisfied after the update.

The result of an update is an edge set containing edges that should be
present after the update and those that should not. This could be in conflict
e.g. [a b ∧ ¬a b]. In this instance the update fails and no change will
be observed. An update statement will not directly change the underlying data
model but forms the first of two distinct phases. The first determines the edge
set on a static view of the data whereas the second enforces this edge set by
producing a change set which will remove existing edges and create edges that
don’t already exist.

Consider [¬(a b ∧ b a)]. Without the negation this is only satisfied
by adding the two relations. In its negative sense either or both relation could
be removed and the statement will hold after the update. Since making a
choice would introduce indeterminism into the update language both are chosen.
Therefore it simply reverses the satisfaction of each component, ¬a b∧¬b
a. Notice that this implies the former and is fully determined. We can now
interpret p ∨ q as ¬(¬p ∧ ¬q) which conforms to its use in the query language.
An unfortunate consequence is that certain logically correct updates will not be
deterministic and hence not permitted.

[a b ∨ ¬a b]

Anonymous-selection is a powerful technique to add relations in a declarative
way. All anonymous atoms can only be referenced through a query that looks
into the atom’s local topology. To introduce such an atom requires constructing
that topology on a fresh atom. An anonymous selection takes the form of a
qunatifier (+r)φ where φ is any valid left-hand side statement. It is to be
interpreted that an anonymous atom r will be selected such that it satisfies
¬(∃t)(r t ∨ t r) before the update and is distinct from all other such
selections. It can be considered a fresh atom and since the anonymous atoms
are well-ordered this selection process can always be made.

We now look at two standard uses for the quantifier. This is best seen using
an example shown as a graph. Initially there will be two atoms a and b with no
edges between them.

a b

The first update associates to each of them a new anonymous atom of their own.

[(+r)(r x)|x ∈ {a, b}]

a b

9

The second update associates to each of them a new anonymous atom shared
between them.

[(+r)[r x|x ∈ {a, b}]]

a b

Further applications cause more new atoms to be associated.

a b a b

To produce idempotent updates the right-hand side of the edge set can be used
to query for the desired relation.

[(+r)(r a)|¬(∃t)(t a)]

To generalise this we extend the syntax with a new quantifier (∗r) such that the
following equivalences hold:

[(∗r)φ(r)|ϕ] ≡ [(+r)φ(r)|ϕ ∧ ¬(∃t)φ(t)]

(∗r)[φ(r)|ϕ] ≡ (+r)[φ(r)|ϕ ∧ ¬(∃t)φ(t)]

This all leads up to some tidy definitions concerning the higher-order rela-
tions. Suppose we wish to assert 〈a b〉 and 〈a b c〉 respectively then the following
updates achieve them:

[(∗r)(r : 〈a b〉)] ≡ [(∗r)(a r ∧ r b)]

[(∗r1)(∗r2)(r1 : r2 : 〈a b c〉)] ≡ [(∗r1)(∗r2)(a r1 ∧ r1 r2 ∧ b r2 ∧ r2 c)]

This can be more consisely written if we are not interested in using some of the
new atoms representing the relations.

[∗〈a b〉] ≡ [(∗r)(r : 〈a b〉)]

[∗〈a b c〉] ≡ [(∗r1)(∗r2)(r1 : r2 : 〈a b c〉)]

7 Graph Evolution

This sections looks at how a graph evolves when updates are applied. All queries
are against a specific version of a specific graph. We begin by considering each
step along a graph sequence. Then we can can build from here to look at the
relationship between sequences and applying updates concurrently.

10

7.1 Physical Change Sets

The state of the model at any sequence point t is simply the set Gt of edges that
exist between atom pairs. An update takes the form (U+

t , U−
t), where an edge

in U+
t is to exist after an update, an edge U−

t is to not exist and all the rest
are to remain unaltered. A change set on the other hand determines how Gt+1

is to be constructed from Gt by toggling the membership for certain edges. We
therefore represent a change set as ∆t ⊆ A

2 such that:

∆t = (U+
t ∩Gt) ∪ (U−

t ∩Gt)

See appendix A for notation. The following then holds:

Gt+1 = (Gt ∪∆t) \ (Gt ∩∆t) = Gt ⊕∆t

The properties of the change set operator ⊕ are also detailed in appendix A.
A sequence of change sets ∆0 . . .∆t−1 fully determines Gt by induction if it

is assumed that G0 = ∅. Therefore:

Gt =
⊕

0≤i<t

∆i

These are referred to as the physical change sets because they take a graph
through its successive versions one at a time building on the previous. Since
they fully determine Gt we can view each graph sequence as its sequence of
change sets 〈∆0, . . . ,∆t, . . .〉.

7.2 Branching

All graphs grow from a common root ∅ but they can also branch at later points.
Consider 〈∆A

0 ,∆
A
1 , . . .〉 and 〈∆

A
0 ,∆

B
1 , . . .〉 as change sets for graph sequences of

〈Ai〉 and 〈Bi〉 respectively. As shown in the diagram the graph sequence 〈Bi〉
inherits its first change from 〈Ai〉 (it branches from A at version 1).

∅ A1 A2

B2

We can say ∆B
0 = ∆A

0 and more generally if B branches from A at t then
∆B

i = ∆A
i ∀i < t. To express this branching directly we write:

11

A0 = ∅ [branch point]

A1 = A0 ⊕∆A
0

A2 = A1 ⊕∆A
1

B0 = A0

B1 = A1 [branch point]

B2 = B1 ⊕∆B
1

Since ∅ is a common root for all graphs we can talk about the graph tree

which considers all branches (graph sequences) as part of a single structure.

7.3 Merging

Given a graph Gt consider ∆
A
t and ∆B

t which are physical change sets applied
to Gt to form two branches At+1 and Bt+1. Under what circumstances can
these branches be merged to produce Gt+1? It is desirable that the results of
changes occurring to Gt by ∆A

t and ∆B
t be jointly preserved in Gt+1. Without

loss of generality we apply ∆A
t first and then ensure that those edges which will

be changed by ∆B
t have not already been altered by ∆A

t . This is expressed as
follows using the change set restriction operator G ↾X= (G ∩X,G ∩X):

(Gt ⊕∆A
t) ↾∆B

t
= Gt ↾∆B

t

This necessitates two conditions

(Gt ⊕∆A
t) ∩∆B

t = Gt ∩∆B
t (by definition)

(Gt ∩∆B
t)⊕ (∆A

t ∩∆B
t) = Gt ∩∆B

t (by (∆5))

∆A
t ∩∆B

t = ∅ (apply ⊕(Gt ∩∆B
t))

and

(Gt ⊕∆A
t) ∩∆B

t = Gt ∩∆B
t (by definition)

(Gt ⊕∆A
t) ∩∆B

t = Gt ∩∆B
t (by (∆2))

(Gt ⊕∆B
t) ∩ (∆A

t ∩∆B
t) = Gt ∩∆B

t (by (∆5))

∆A
t ∩∆B

t = ∅ (apply ⊕(Gt ∩∆B
t))

12

So we can proceed to define a change set merge operator ⊎ such that:

X ⊎ Y = X ⊕ Y where X ∩ Y = ∅

otherwise a conflict occurs and no merging can proceed.
As an example consider a graph with a two edges “a” “1” and “b”

“1”. Then the change sets {(“a”, “1”), (“a”, “2”)} and {(“b”, “1”), (“b”, “2”)}
can be merged without conflict and increment the two counters. However, the
change sets {(“a”, “1”), (“a”, “2”)} and {(“a”, “2”), (“a”, “3”)} can be applied
in sequence but would cause a merge conflict.

It should be noted that even if a merge conflict doesn’t arise that consistency
could still be violated since the edges involved in the query part of the update
are not checked for conflict. This would occur if one update relies on reading
(but not changing) an edge that is then changed by another change set. These
two change sets could still be merged but certain properties that exist after
each taken in isolation may not be preserved. So it can be said that the merge
operator handles write conflicts but not read conflicts. Indeed this is true of
all the change set operators, they handle the physical aspects of the graph tree
evolution. Any logical aspects should be enforced by constraints which are
discussed later.

7.4 Logical Change Sets

From the building blocks of physical changes sets we can look at logical change
sets which consist of one or more phyiscal changes sets rolled up. For instance:

δt,t+k = ∆t ⊕ . . .⊕∆t+k−1

These can be treated just like physical change sets with regard to merging
and branching. Notice that changes can occur during a logical change set that
would normally conflict in merging but so long as these changes are later reversed
within that logical change set no conflict will occur.

The generalised merge rule is:

Gt+1 = Gt ⊕ (δ1t,t+k1
⊎ . . . ⊎ δnt,t+kn

)

Despite each branch moving multiple versions, the merged branch is only ad-
vanced once since only one change set is applied to it.

7.5 Grafting

So far merging of branches has been shown to be possible where a common
branch point is identified. However, it may be the case that a section of a graph
sequence represented as a logical change set needs to be applied to another
branch where no common root can be established at the point of the change set.
Since change sets are not idempotent it is necessary to carry over some of the
original graph structure to ensure the change set is correctly applied. Consider

13

two graph branches Gr and Hs where a common root only exists strictly before
min(r, s) (remembering that all branches have ∅ as a common root). Then
δHs,s+k can be applied to Gr only if the following condition holds:

Gr ↾δH
s,s+k

= Hs ↾δH
s,s+k

This ensures the change set is applied under the same conditions on both
branches. It trivially holds where r = s and the branching is coming from
a common root so merging is a special case. Since δHs,s+k is recoverable from
Hs ↾δH

s,s+k
(see appendix A) only the latter is necessary for the definition of the

graft. We can write a change set grafting operator Gr տ X as follows:

Gr տ Hs ↾δH
s,s+k

= Gr ⊕ δHs,s+k where Gr ↾δH
s,s+k

= Hs ↾δH
s,s+k

7.6 Undo

This simple case is handled by reapplying the last change set to undo its effects.
In symbols this amounts to G⊕X ⊕X = G.

8 Serialisation Strategies

The previous section covered all the necessary algebra to extensively handle
branching, merging and grafting in a very general manner. However, at no
point was there any consideration for the overall evolution of the graph tree in
real time. This would be the case for any realisation of QuabeC as a database
system.

The abstraction we use in this section is that of a sequence of requests
arriving at the graph tree. Simultaneous requests are arbitrarily ordered to
simplify the model. We write Gread

r and Gwrite
w as the read node and write node

respectively for a request. For a query request there is simply the read node
and a query formula. There is no issue of conflict with multiple query requests
so long as their read nodes exist.

An update request requires a query request and a write node to apply the
resulting change set to. This write node must be a leaf in the graph tree so it
can be immediately applied. Given that grafting is possible the read node and
write node are independent so long as the grafting conditions hold.

The next stage is to develop an algorithm for determining the read and write
nodes for incoming requests. It is not feasible for a requesting system to know
precisely which nodes it needs since it may require the ‘latest’ or ‘next’ node on
a given branch. We label each branch with a simple name where there are as
many branches as there are leaf nodes. This means that non-leaf nodes are not
uniquely named since each branch name labels all nodes from the leaf to the
root. The algorithm works with a triple of data (Gread, k, Gwrite).

14

(Gread, k, Gwrite)→















(Gread
k , Gwrite

w) 0 < k ≤ r
(Gread

r , Gwrite
w) k = 0

(Gread
w+k, G

write
w) −w ≤ k < 0

failure otherwise

Where w is the next available write sequence number on Gwrite and r is
largest sequence number on Gread. If Gwrite does not exist it is created as a
new branch such that Gwrite

r = Gread
r and w = r + 1. If updates are handled

serially then w = r + 1 but introducing the notion that updates can be oc-
curing concurrently allows for a wider variety of interpretations. For instance
(G,−1, G) is a serial update on G that waits for all current updates to finish
(Gread

w−1 may not yet exist although it will be scheduled for creation). A non-
waiting update would take the form (G, 0, G) and a simple branch (G, 0, G′)
where G′ does not exist. If G′ 6= G exists then the last update would be a graft.

The algorithm is both lock-free and wait-free since a natural order is assigned
to each update and no update can prevent another finishing for any more than
a finite period. This is a direct consequence of updates being of finite duration.

8.1 Long Transactions

Long transactions can be implemented in a non-blocking way by breaking them
into smaller updates. Each part would specify the same fixed read node and
rely on merging to detect write conflicts.

A greater degree of security can be obtained by implementing a locking or
versioning mechanism within the graph structure. The simplest example is a
counter. By ensuring that the long transaction is the sole incrementer of a given
counter it can be sure of its own consistency. However, in the face of failure
it would have to implement its own rollback procedure. This may not always
be possible but is an essential problem whose only alternative is to lock some
section of the graph at the risk it is never released. Note that this strategy can
also be enforced so long as all updates go through a single coordinator which is
a suggested strategy for using QuabeC. See section 11 for more details.

9 An Alternative Representation

The underlying graph is potentially countably infinite. Consider [r “x”],
this will associate each atom with “x” creating one edge per atom. However,
viewed another way the graph structure is always determined by a finite number
of finite update formulæ. So there is at least one finite representation of any
potential graph, namely, the sequence of updates creating it.

We now look at how to construct queries and updates as solutions to satis-
faction problems. To simplify this construction we associate each atom with an
element of Z such that the anonymous atoms are all negative and each named
atom retains its lexicographic order under the usual integer order. This means
“” becomes 0 and to disambiguate the old ordering we write <A. This forces an

15

order on the anonymous atoms which simplifies the following constructions. In
this simpler model a graph is a subset of Z× Z.

9.1 Queries

A query is an expression of the form {(x1, . . . , xn)|φ} where φ has n free vari-
ables. If φ has m quantifiers then its bound variables are xn+1, . . . , xn+m all
distinct from each other.

9.1.1 Reduction

We first recursively re-write φ according to the following rules to bring it into
prenex disjunctive normal form.

• Reduce φ to its canonical form by removing all uses of extensions.

• Replace each occurrence of ¬(∀xi)(φ) with (∃xi)(¬φ).

• Replace each occurrence of ¬(∃xi)(φ) with (∀xi)(¬φ).

• Replace each occurrence of ¬¬φ with φ.

• Replace each occurrence of x <A y with x < y ∧ ¬(y < 0).

• Replace each occurrence of ¬(x = y) with (x < y) ∨ (y < x).

• Replace each occurrence of ¬(x < y) with (y < x) ∨ (x = y).

• Replace each occurrence of ¬(x y) with x 6 y.

• Replace each occurrence of (φ ∨ ϕ) ∧ ϕ with (φ ∧ ϕ) ∨ (φ ∧ ϕ).

• Replace each occurrence of ¬(φ ∧ ϕ) with ¬φ ∨ ¬ϕ.

• Replace each occurrence of ¬(φ ∨ ϕ) with ¬φ ∧ ¬ϕ.

• Replace each occurrence of Λe
F (p)(x

e) depending on F :

– F is not a valid 1 place predicate, replace by ⊥.

– F is satisfied by an infinite set of atoms, replace by ⊥.

– F is satisfied by known p1, . . . , pn, replace by @p1(x
e)∧. . .∧@pn(x

e).

The resulting query takes the form:

{(x1, . . . , xn)|(Qn+1 . . . Qn+m)(C1 ∨ . . . ∨ Cr)}

Where each Qi is either ∀ or ∃ and there are no occurrences of ¬. Each Ci is
the conjuction of atomic formulæ of xi or integer constants involving <,=, or
6 only.

In this first step we assume the query is over G0 = ∅ so a further reduction
can be done such that all occurrences of x 6 y are removed and any Ci with an

16

occurrence of x y is completely removed. We now have a fixed model over
Z× Z which will form the basis for arbitrary updates.

The next step involves building a graph for each conjunctive clause C as
follows:

1. Create an equivalence class X = {xi} for each xi.

2. For each occurrence of x < y in C assign an edge from X containing x to
Y containing y. (X and Y maybe the same).

3. For each occurrence of x = y combine X containing x to Y containing y
to form a single class.

Call this graph R which may not be fully connected. If any class in R contains
two differing constants or if R contains a cycle then C is false and can be removed
entirely.

We now proceed to define lower and upper bounds lb and ub on each class
X in R.

lb(X) =







κ− 1
2 κ ∈ Z

min({lb(Y)|Y → X})
−∞ otherwise

ub(X) =







κ+ 1
2 κ ∈ Z

max({ub(Y)|X → Y })
∞ otherwise

This is sufficient to generate all tuples of the inner expression as follows.
The tuples satisfying each Ci are the cartesian product of all the sub-tuples
generated by each connected subgraph. Variables occurring within any X are
bounded in (lb(X), ub(X)). They are also constrained by variables in classes
leading from and to that class as well as variables and constants in their own
class. The total tuple set is the union of the tuples generated by each Ci.

For example the following generates tuples (x1, x2, x3, x4, 7) such that x1 <
x2 and x3 = x4 < 7 along with (x1, x2, x3, x4, x5) such that 0 < x1 < 5.

x1 x2

x3
x4

x5
7

0 x1 5

17

9.1.2 Quantification

Given the above graph construction we can see that within any conjuction term
C a given variable x is bounded within a known interval. We aim to remove the
innermost quantifier.

We proceed by forming sub-intervals {Jj} of Z for x by taking the end points
of all intervals which bound x across all the graphs along with −∞ and∞. Each
interval I is then the union of some subset of the {Jj}. Suppose I = J1 ∪ J2
then:

φ = x ∈ I ∧ φ = (x ∈ J1 ∧ φ) ∨ (x ∈ J2 ∧ φ)

If for some J there is no I that contains it we include:

x ∈ J ∧ x < x

To keep the graph representation in accordance with this re-write new variants
will need to be formed. For each graph find the class X containing x and
produce variants for each J ⊆ I by including constant bounds. This requires
adding {lb(J)} → X → {ub(J)}. Note that constants can appear in multiple
equivalence classes without harm.

We handle the two sorts of quantifier differently.

Universal Quantification

Consider a simple case (∀x)((x ∈ J1 ∧ φ1(x, y)) ∨ (x ∈ J2 ∧ φ2(x, y))) such
that {J1, J2} is a partition of Z. The aim is to generate all y that satisfy this
formula. This is equivalent to the following chain of formulæ:

(∀x)((x ∈ J1 ∨ x ∈ J2) ∧ (x ∈ J2 ∨ φ1)∧

(x ∈ J1 ∨ φ2) ∧ (φ1 ∨ φ2)) expansion

(∀x)((x ∈ J2 ∨ φ1) ∧ (x ∈ J1 ∨ φ2) ∧ (φ1 ∨ φ2)) J1 ∪ J2 = Z

(∀x)((x ∈ J1 → φ1(x, y)) ∧ (x ∈ J2 → φ2(x, y)) ∧ (φ1 ∨ φ2)) Z \ J1 = J2

(∀x)(x ∈ J1 → φ1(x, y)) ∧ (∀x)(x ∈ J2 → φ2(x, y)) implication

This result can be extended for more than two terms. To solve for y we look at
the constraints on φ1 when x ∈ I1 simultaneously with the analogous case for
φ2.

For each Jj there will be one or more corresponding graph variants produced
above. We consider each possible combination such that there is exactly one
graph variant for each Jj . Universal quantification requires satisfaction across
all of Z. For each combination the identity above is used to combine the graph
variants and remove x. Then the disjunction of all combinations is taken as the
result. Each graph is pre-processed in effect calculating (∀x)(x ∈ J → φ).

18

• Step 1
Find the class X containing x and ensure X = {x} (or if it contains a
constant then J = {x}).

• Step 2
For each Y such that Y → X add Y → {lb(X)}.

• Step 3
For each Y such that X → Y add {ub(X)} → Y .

Across all variants merge all classes which share members and bring over
all edges. Cycles and conflicts with distinct constants appearing in the same
class are resolved by skipping the affected combination (there may be not valid
combinations). Lower and upper bounds are now re-calculated and any empty
intervals also result in the affected combination being skipped.

Existential Quantification

This situation is easier. Again consider a simple case (∃x)((x ∈ J1 ∧
φ1(x, y)) ∨ (x ∈ J2 ∧ φ2(x, y))) but this time J1 and J2 do not need to form
a partition, they could even be equal. This is equivalent to:

(∃x)(x ∈ J1 ∧ φ1(x, y)) ∨ (∃x)(x ∈ J2 ∧ φ2(x, y))

Each graph is processed as follows but no new disjunction needs to be taken.

• Step 1
Find the class X containing x.

• Step 2
For each Y such that Y → X add Y → {ub(X)}.

• Step 3
For each Y such that X → Y add {lb(X)} → Y .

Cycles and conflicts can’t occur but empty intervals result in the graph being
removed from the disjunction.

9.1.3 Resulting Structure

The final situation is a graph representation in the same form as before but
with all references to x resolved. The method is repeated until all quantifiers
are resolved arriving at a graph representation which can generate all tuples.

19

9.2 Updates

Take an update of the form [x y|φ] this is calculated as a query {(x, y)|φ}.
Similarly [¬x y|φ] uses the same query. Any update [R1 ∧ R2|φ] can use
the union of queries for each component update. Updates are a restricted form
of queries where only two variables occur. We can now study updates in this
context. The graph representation used for queries reveals enough information
to fully describe updates as queries over two variables x and y. Conjunctions
are handled as the union of the resulting subsets of Z×Z. Anonymous selection
is handled by preselecting a batch of atoms and re-writing the formulæ.

Any graph with only x, y and constants appearing can only take one of the
forms described next.

9.2.1 Unrelated

Each of x and y appear in their own sub-graph. They can only have edges
to and from classes containing a single constant and/or be in a class with a
constant. If they appear in a class with a constant the constant can be removed
and bounding classes used in place. If no bounds appear then dummy bounds
of −∞ or ∞ can be introduced. The only form remaining is:

κx
1 x κx

2

κy
1 y κy

2

9.2.2 Related

In the second case we have x and y related by atomic formulæ.

• x < · · · < y

• y < · · · < x

• x = y

The dots arise since quantified variables could have left empty classes on
paths between x and y. Should constants appear on such paths then x and y
are really unrelated and fall into the first case. Define an edge label k by:

k =







n x < z1 < . . . < zn−1 < y
0 x = y
−n y < z1 < . . . < zn−1 < x

There will also be constant bounds as before. This results in the following graph:

20

κx
1 x κx

2

κy
1 y κy

2

k

9.3 G1

Now updates over G0 = ∅ have been covered the form of G1 is the union of
graphs or their complements following 2 simple forms. From each of these
forms it is easy to reconstruct a wff that represents them. These wff s are the
logical form of G1 that can be substitued into queries whenever xi xj or
xi 6 xj occurs. The preceeding method of handling queries then carries over
to subsequent graph updates.

This alternative representation demonstrates how a graph tree can remain
finite.

10 Constraint Atoms

The flexibility of the data model poses a risk that the structure will become
unmanageable and hard to understand. To prevent this a series of constraints
can be imposed which will define a data schema. A constraint is represented by a
truth statement held as an atom’s name. Only one atom needs to be proposed
since it can combine the results of other constraint atoms. Let c1, . . . , cn be
atoms whose names are valid truth statements posing as constraints. Then
choose C such that:

var C = “c1 ∧ . . . ∧ cn”

The constraint atom C will be used as a check to ensure consistency is main-
tained. This method is simple but any constraint changes will require proposing
a new constraint atom. By using a ΛF (p) predicate this can be avoided. Suppose
that for any constraint atom c the relation 〈c “in” “Constraints”〉 holds. Then
C can be chosen such that:

var F = “〈1̂ “in” “Constraints”〉”

var C = “ΛF (c)(c)”

Should any constraint atom not contain a valid statement then the constraint
fails. This prevents invalid contraints being formed since any update that in-
troduces an invalid constraint will be undone. A constraint atom is specified as
part of any update. Where the constraint fails the update is not applied but
the sequence number on the branch is still incremented so as not to break the
serialisation algorithm.

21

11 High-Level Usage

As presented QuabeC should be considered as a physical backend for a rich
database system. It provides all the mechanisms required for extremely com-
plex data management and evolution that encompasses common functions of
databases and version control systems simultaneously. However, it doesn’t pro-
vide certain features such as security, locking, mirroring, backup, etc that maybe
desired. All of these features can be built on top of QuabeC and are discussed
here.

Each graph tree is considered to be an individual “database” and would have
a dedicated co-ordinator responsible for assigning permissions to updates and
queries. The co-ordinator’s role is to act as a single point of interaction with
the graph tree by client systems. As requests arrive they can be re-directed
to storage engines that manage subsets of the nodes on the tree. In this way
it is possible to parallelise the system and prevent bottlenecks. To mirror the
tree is paramount to sending each update request to an alternative instance in
the same order they are processed in the master system. The co-ordinator will
be reponsible for bundling constraints with requests to any branch since there
maybe security concerns at this level.

Archiving maybe appropriate and can be managed by the coordinator. Prun-
ing the tree from the root maintains the branch structure but prevents certain
branch nodes being available. The co-ordinator can report errors arising from
accessing non-existent nodes as it would if future nodes were referenced.

12 Implementation

This section sketches some ideas on implementation. The state of the graph
tree is uniquely defined by the sequence of updates that lead up to its current
structure. This can be used for physical storage. First create a string b-tree to
map referenced atom names to a natural number. Anonymous atoms can be
numbered more easily. Take each update and replace all atom references by the
assigned number. Store both the pool of atom names and each update formula.
As an update is committed entries are written to the string pool and then the
update appended to the update log.

The database would be inefficient to handle like this so an in memory rep-
resentaion is kept that is efficient to handle. Where this exceeds the memory
bounds it can be paged to external storage as blocks. It doesn’t matter whether
blocks are flushed often since the definitive tree state is held by the update
log. On failure this can be consulted to repair the running representation. The
blocks may contain some portion of an uncommitted update at any time without
harm.

It’s not necessary to prematurely force blocks to external storage. By defer-
ring this steps enables multiple blocks to be written without additional seeks.
Crucially an update could incur as little cost as the single commit to the update
log requiring only a single seek if it contains no new atom names.

22

If archiving occurs a check point of the running representation at the archive
point can be made, the update log truncated and the string pool garbage col-
lected. A second consideration is branching the update log but this is harder
where grafting occurs.

The running representation will take the form of blocks handling various
edges. Edges are not necessarily treated in isolation but in sets are discussed in
section 9. For each edge set it is only necessary to record at what version it was
toggled. At a branch point a link is made to its parent branch. When blocks
are overfull the edge sets can spill into additional blocks such that like versions
are held as closely together as possible. Searching back to the root for each
query counting the number of times edges have been toggled can be avoided by
keeping a status flag in each block for some known version.

A ∆-algebra

Some results about the ∆-algebra are given here. We write X to mean the
complement of X in A

2.
The definition of the change set combine operator ⊕ is such that:

X ⊕ Y = (X ∪ Y) \ (X ∩ Y)

By definition we can see that X ⊕ Y = Y ⊕X and X ⊕X = ∅.

X ⊕ Y = (X ∪ Y) \ (X ∩ Y)

= (X ∪ Y) ∩ (X ∩ Y)

= (X ∪ Y) ∩ (X ∪ Y) (∆1)

= (X ∩ Y) ∪ (X ∩ Y) (∆2)

X ⊕ Y = (X ∪ Y) ∩ (X ∪ Y) (by (∆1))

= (X ∪ Y) ∪ (X ∪ Y)

= (X ∩ Y) ∪ (X ∩ Y) (∆3)

= (X ∪ Y) ∩ (X ∪ Y)

= (X ∪ Y) ∩ (X ∪ Y)

= X ⊕ Y = X ⊕ Y (∆4)

23

(X ⊕ Y)⊕ Z = ((X ⊕ Y) ∩ Z) ∪ ((X ⊕ Y) ∩ Z) (by (∆2))

= ((X ∩ Y) ∪ (X ∩ Y) ∩ Z)∪ (by (∆2))

((X ∩ Y) ∪ (X ∩ Y) ∩ Z) (by (∆3))

= (X ∩ Y ∩ Z) ∪ (X ∩ Y ∩ Z)∪

(X ∩ Y ∩ Z) ∪ (X ∩ Y ∩ Z)

= X ⊕ (Y ⊕ Z) (by symmettry)

(X ⊕ Y) ∩ Z = (X ∪ Y) ∩ (X ∩ Y) ∩ Z

= ((X ∪ Y) ∩ Z) ∩ ((X ∪ Y) ∪ Z) (Z ∩ Z = ∅)

= ((X ∩ Z) ∪ (Y ∩ Z)) ∩ ((X ∪ Z) ∪ (Y ∪ Z))

= ((X ∩ Z) ∪ (Y ∩ Z)) ∩ ((X ∩ Z) ∪ (Y ∩ Z))

= ((X ∩ Z) ∪ (Y ∩ Z)) ∩ ((X ∩ Z) ∩ (Y ∩ Z))

= (X ∩ Z)⊕ (Y ∩ Z) (∆5)

The definition of the change set restriction operator ↾X is such that:

G ↾X= (G ∩X,G ∩X)

If G ↾X= (A,B) then X = A ∪B.

B Unresolved Questions

• Anonymous atoms could be exhausted by updates such as [x x]. Should
certain updates be denied?

• Can atoms be typed such that xt implies x t? eg. {xt|φ(x)} ≡ {x|x
t∧φ(x)} and (∀xt)φ(x) ≡ (∀x)(x t→ φ(x)). This would force all graphs
to be necessarily finite since atom ranges would be explicitly defined by
their type.

• Could anonymous selection be made a right-hand side term?

• Do the merge conflict conditions work in all relevant situations? Certainly
they do in transitions such as from a 1 to a 2 since it contains both
a removal and an addition.

24

References

[1] “Efficient Lexicographic Encoding of Numbers”, Peter Seymour.

25

