
An Efficient Wait-free Queue Implementation

Peter Seymour

peteralanseymour@hotmail.com

February 9, 2020

1 Introduction

Interest in lock-free and wait-free algorithms for use in concurrent systems has
recently been gaining in popularity. Lock-free is the property that at any time
at least one process will be making progress (although no guarnatees of fairness
are assumed). Wait-free is the property that any process will complete in a
finite amount of time. Most papers on concurrent algorithms focus on com-
plex structures such as maps with multiple processes simultaneously accessing
and updating the state. However, all these algorithms either use locks which
are not only expensive to implement but lead to structures that are hard to
reason about or employ some form of RCU (read-compare-update) which gives
non-deterministic behaviour and potential starvation scenarios. Other problems
arise such as memory management since without consensus between processes
it’s hard to determine whether memory is in use or not. These algorithms make
the assumption that concurrency is implemented using threads and shared data
structures, however, the actor model can handle this situation more elegantly.
Each structure is represented as an actor receiving and sending messages asyn-
chronously. To access a map, send it a message and wait for the response. To
update a map, send it a message. This still requires a queue to handle the mes-
sage passing implementation and it must work with concurrent processes but at
least the model is becoming simpler. The consumer of messages in this queue
is a single process, an actor, but there could be mutiple producers. Again the
above techniques are needed to handle the contention of the mutiple producers.
This can be avoided in numerous ways.

Dedicated queues Each actor pair has a dedicated message queue. However,
this is only practical for a small fixed number of proceses as it scales
exponentially.

Mailer process Each actor communicates on a dedicated queue to a mailer pro-
cess that then forwards the message on another dedicated queue to the
consumer. This scales linearly but imposes a huge burden on the single
mailer process.

1



Tree approach A tree of mailers would be able to forward messages in logarith-
mic time but only be subjected to linear increases in workload. A runtime
of lightweight threads such as in Erlang does not suffer these problems as
it is inherently a single path of execution application but communication
between it and other instances or external devices can use dedicated pipes
in a tree configuration.

The hybrid approach outlined above scales as well as can be expected by any
scheme. Where a single path of execution runtime manages multiple processes
no concurrency issues arise. At the medium level are dedicated queues until
scaling problems occur. At higher levels logarithmic performance is accepted
using a tree of mailer nodes. The higher level includes unbounded numbers of
processes distributed globally as used by the Internet.

This all leads to a model that requires a very fast and simple queue that has
a single producer process and a single consumer process. These requirements
can be met using no more sophisticated primitives other than atomic reads and
writes. It is shown in [?] that not even 2-concensus can be acheived with atomic
registers. Consensus is roughly defined as peer processes all using the same
algorithm coming to consensus on one of their input values in a finite amount
of time. Is this a problem? Not really since a master process can be added to
arbitrate decisions. In the real world the same problem occurs. If two people
cannot agree then either no consensus is reached or a third-party must act. This
is a natural way to structure software with a hierachy of processes. Hopefully the
case has been made that possibly the simplest of structures can solve the vast
majority of concurrency issues when shared state is replaced by more elegant
constructs. There will always be exceptions but the following implementation
is so efficient it lends itself to wide usage.

2 The Implementation

This section details the implementation in a loose version of C++. The structure
of the message is assumed to be of a fixed size but where that is a problem the
message can be a pointer to a variable length message structure. Each message
is contained in a Packet structure which also contains a possibly null pointer
to another packet forming a linked list. Both the producer and consumer are
modelled as agents which allows the common functions to be shared.

2.1 Agents

There are in fact two linked list between both agents. One is used by the
producer to append new messages for the consumer to read and the other for
the consumer to send them back for re-use. The producer is only allowed to
create a fixed number of packets so relies on the consumer to send them back.
An agent contains three pointers to packets and a counter:

Packet* _write;

2



Packet* _read;

const Packet* _end;

int _credit;

The write pointer indicates the last packet on the outgoing queue of an
agent. The read pointer indicates the head of the incoming queue and end

points to the packet after the last element in the queue that can be safely read
or used. The counter credit keeps track of difference between the number of
packets sent and received. The key functions are scan, extract, insert and
empty.

Figure 1: Producer and Consumer connected by two linked lists

The function scan advances the end pointer over all the packets in the
incoming queue until it settles on the final one which will have a null next
pointer. This final one cannot be extracted as there must always be at least one
packet in each queue. Initially both queues are given one packet to link the two
agents together.

void scan()

{

const Packet* pkt = atomic_read( &_end->next );

while( pkt != 0 )

{

_end = pkt;

smp_read_barrier_depends();

pkt = atomic_read< const Packet* >( &_end->next );

++_credit

}

}

The atomic read function reads a value from the address specified. All
mainstream architectures ensure that aligned reads of values no larger than a
word are atomic making this is a no-op. The function smp read barrier depends

is both a barrier that ensures the data which can be dereferenced from the packet
pointer is read in order. It seems only the Alpha architecture does not do this
by default but more information is given in [?]. The smp functions are as used

3



in the Linux kernel [?]. They ensure firstly that the compiler will not move re-
spective reads and writes over this barrier nor will the cpu reorder them across
multiple processors. The credit counter is incremented indicating the agent
has one more packet in hand.

The function extract detaches a packet from the incoming queue. It should
only be called if read != end as that indicates the packet has been scanned.
Note that scanned packets are safe since the dependencies have been ensured.

Packet* extract()

{

Packet* pkt = _read;

_read = _read->next;

--_credit;

return pkt;

}

The function insert inserts a packet into the outgoing queue.

void insert( Packet* pkt )

{

smp_write_barrier();

atomic_write< Packet* >( &_write->next, pkt );

_write = pkt;

}

The write barrier ensures that the content of the packet will appear correctly
written prior to the packet being linked onto the list. Note that the barrier in
scan ensures it is read correctly. Again writing the pointer should be an atomic
operation. Once completed the packet is available for the other agent to read
it. In effect the other agent now owns that packet.

Finally to detect if the incoming queue is empty is the function empty. If
this returns false it is safe to call extract. It also contains a call to scan so
that repeated polling on the queue will advance once new packets are available.

bool empty()

{

scan();

return _read == _end;

}

2.2 Producer and Consumer

Now that the common functionality is covered the final producer and consumer
specialisations can be constructed. The producer is slightly more complicated
as it must create new packets when none are free. It has a single produce

4



function that may fail and will return false. The only way it can fail is if it
has used up all its available rights to create new packets. This is modelled with
a counter overdraft that is initially set with the maximum queue size. A
greater allowance can be given to the producer allowing the queue to extend
indefinitely.

bool produce( const Message& message )

{

if( empty() )

if( !create() )

return false;

Packet* pkt = extract();

pkt->next = 0;

pkt->message = message;

insert( pkt );

return true;

}

The function create generates a new packet and adds it to the list of scanned
packets as follows:

bool create()

{

if( _overdraft == 0 )

return false;

Packet* pkt = new Packet;

pkt->next = _read;

_read = pkt;

--_overdraft;

++_credit;

return true;

}

The process controlling the producer can check what proportion of the queue
is in use and adjust its behaviour. This is achieved with a function spare

indicating how many productions will succeed if at worst no more packets are
returned. The producer could throttle its behaviour if this falls below a certain
threshold enabling the producer to dynamically adjust its production rate for
maximum flow.

size_t spare()

5



{

scan();

return _overdraft + _credit;

}

The consumer is simpler and enables the most recent packet to be looked at
through consume. If none is available a null pointer is returned.

const Message* consume()

{

if( empty() )

return 0;

Packet* pkt = extract();

pkt->next = 0;

insert( pkt );

return &_read->message;

}

Notice that although the packet is extracted and placed on the outgoing
queue it will not be reused by the producer. The producer will scan upto this
packet at most since it must always leave one in the queue. This means the
message contents can be safely used by the consumer process until another
packet is consumed..

2.3 Producer and Consumer timeouts

Both produce and consume may fail so a further variant is to include an over-
load that keeps trying for a fixed period of time. It is best for neither agent
to enter a busy-wait state so these functions judiciously yield and sleep and
the processes/threads. On a single cpu machine having either agent busy-wait
prevents the other agent unblocking the situation. This will eventually resolve
itself but is similar to a deadlock.

bool produce( const Message& message, size_t period )

{

Ticker ticker;

if( produce( message ) )

return true;

yield();

for( size_t t = 1; ticker.period() < period; t *= 2 )

6



{

if( produce( message ) )

return true;

sleep( t );

}

return false;

}

The Ticker instance counts milliseconds since its construction. The process
(thread) yields first to allow a fast switch to the consumer if the agents have
their execution interleaved. If this fails then it backs off for at most double the
period specified which is the true timeout. Yielding only makes sense in threaded
environments and would be removed for inter-cpu communication. Similarly for
the consumer.

const Message* consume( size_t period )

{

Ticker ticker;

const Message* msg;

if( ( msg = consume() ) != 0 )

return msg;

yield();

for( size_t t = 1; ticker.period() < period; t *= 2 )

{

if( ( msg = consume() ) != 0 )

return msg;

sleep( t );

}

return 0;

}

3 Conclusion

The queue implementation detailed in this paper is very efficient since the syn-
chronisation primitives will translate into either no-ops or single machine code
instructions to adjust the memory bus. There is no requirement to call OS
level functions, speculatively lock structures or flush caches. The queues also
provide a high-level interface to send messages with efficient backoff. Using lar-
gish timeouts does not affect performance but enables the two agents to run at

7



synchronised speeds without the application paying too much attention to this
matter.

References

[1] “Wait-Free Synchronization”, M. Herlihy, ACM Transactions on Program-
ming Languages and Systems, 1991.

[2] “Memory Ordering in Modern Microprocessors”, P. McKenney, Linux Jour-
nal, 2005.

[3] “Linux Cross Reference (asm-xxx/system.h)”.

8


