
Towards A Universal Model Of Computing

Peter Seymour

20 July 2006

Abstract

This paper is kept for historical reasons only and contains the
original introduction to a paper of the same name. The main de-
scription has now been moved largely unaltered into [1] as part of
the Breathe System, see [2].

Original Abstract

Much work has been done in the field of theoretical computer
science to study universal machines and simultaneously many vir-
tual machines have been devised to solve particular problems and
implement a wide variety of languages and platforms. However,
there seems very little in the way of overlap. In this paper I discuss
a model that is both theoretical in its construction but at the same
time yields a practical model in which modern computer languages
and platforms can be described.

1 Introduction And History

This paper presents the construction of an abstract
model of computation. Many if not all of the con-
stituent parts are drawn from previous work in com-
puting. However, the way these ideas are brought
together is novel with a stringent constraint that the
final product is as clean as possible whilst being prac-
tical for actual use.

The original spark of inspiration came from frus-
trations at using a largely incomplete compiler that
failed to compile textbook code. It caused me to
think about how much effort is involved in writing a
compiler and that even updating an existing compiler
to incorporate new features is unnecessarily hard for
a large language. Since I only wanted a language
compliant and reliable compiler I was prepared to
sacrifice efficiency to some degree and set about de-
vising a virtual machine. The virtual machines I

studied had fixed sets of primitive operations, how-
ever, Microsoft’s IL (intermediate language for their
.NET platform [3]) used fewer by making behaviour
dependent on the argument type at runtime. I’m sure
other machines had done this previously but this was
the first time I became aware of it. I took the idea
to its logical conclusion and had a single operation
although this has since been increased to a gener-
ous two. Many execution environments although cer-
tainly not all have at least one stack. Some may have
more than one, for instance an evaluation stack and a
call stack implemented independently of each other.
If I were to be able to easily target such environments
to my model some form of multiple stack capability
would be needed. Since there was no obvious answer
to the number I decided that the internal state would
be entirely stack based. Some of these might be used
to store a single item of data whilst others would be
used for calculations. The decision would be left to

1 Copyright c© 2006 Peter Seymour. All rights reserved.

This work is registered with the UK Copyright Service.



implementer at the latest possible stage. This forms
the basis of the model: A finite but unbounded num-
ber of finite but unbounded length stacks containing
typed elements and a single type dependent opera-
tion.
At this point I strayed from my original motivation

and thought in terms of arbitrary runtime environ-
ments and how they might be expressed. If it were
easy to implement a compiler or an interpreter for any
language then inventing many small languages would
represent little cost. Given that all these small lan-
guages would target the same underlying model there
is no reason why they could not co-exist in such a way
that systems would be constructed from multiple lan-
guages, each tailored for a specific domain. At the
time of writing domain specific languages are becom-
ing more fashionable but the question of how best to
implement them remains open. This is an area I’m
particularly interested in researching further.
There existed an obvious hole in my simplistic

model. Since a stack element is typed in some way
and there is an operation that is type dependent what
role does the state of an element represent and how
is it changed? Looking at a trivial but important
example of basic addition seemed appropriate. Sup-
pose two elements have some integer type with their
corresponding states representing their values. There
needed to be a way to compute the sum so the single
operation acting on these two integers needed to be
informed what arithmetical operation was to be per-
formed. I added a third element to the mix whose
type would somehow denote addition. Grouping all
three constituent parts into an array and having the
operation act on that made sense but expressing the
semantics of addition was still impossible. The obvi-
ous solution is to come up with a list of operations
that are deemed useful and have these as primitives.
This would be the route taken in all virtual machines
I have seen but is the reason I believe the machine
becomes quickly coupled to the language or at least
the style of language. In a truly general model that
I now sought I needed something else. I could have
left it open to definition by a particular platform im-
plementer. For example a series of plug-in modules
would implement a set of primitive operations avail-
able on a real computer. It certainly would have al-

lowed access to all the features a given architecture
had but completely violated any concept of univer-
sality and platform independence. Ideally I wanted
my model to be abstract as well as realisable. The
idea I later adopted came after reading a chapter in
a set theory book on register machines [4]. Since I
had included a stack machine in my model there was
no reason not to employ a register machine as well.
I was certain to be on safe ground as these are pow-
erful models. Both capable of arithmetic at the very
least. So I included a register machine that would
act on the state of one type and produce a new state
with a predefined type. This new element would be
presented back to the stack machine. Not only would
this allow a large class of problems to be solved but
has a very appealing consequence. The stack machine
is incapable of distinguishing two elements by their
state; it is only type aware. The register machine
is incapable of distinguishing two elements by their
type; it is only state aware. The internal state of an
element corresponds to a natural number thus enu-
merating all states of a type. Technically the actual
construction I use allows the register machine to de-
termine that some elements are of a different type but
can never make the converse assertion. A procedure
in the register machine maps one type to another en-
suring all elements are well typed. The stack machine
uses the type alone to select the required procedure
to be performed and maps each element’s state to a
register.
The model requires a set of types to be constructed

and that construction has changed over time. How-
ever, I always thought of it as a very small number
of predefined types, a countable set of user types and
some type constructors.
As I attempted to write an implementation of the

model I discovered many things it would ideally need
to do to be able to realise actual software and plat-
forms. Typically one source of problems arose from
trying to be able to describe in the most abstract form
possible an operating system. An operating system
represents one extreme in computing of being highly
dependent on hardware, however, it seems possible
now to even express device drivers. One by one I
have added to the model the minimum amount of
infrastructure necessary to add as much functional-

2 Copyright c© 2006 Peter Seymour. All rights reserved.

This work is registered with the UK Copyright Service.



ity as possible. Each time drawing from traditional
concepts and resisting the urge to devise overly in-
genious concepts with limited general use. The core
of the model has been successfully summarised above
and the rest is detailed in later chapters.

2 Key Ideas

While reading what follows some key concepts should
be kept in mind. Despite the historical motivation
which began by looking at a single compiler and sin-
gle language the scope has increased dramatically and
while the original problem still remains I aim to tackle
something far larger. That is: How can we success-
fully describe not only computation but the machines
(abstract or otherwise) that it works within. Indeed
in what follows I speak of machines, however, these
are fully described by a series of semantics and es-
sentially form a domain. As such the question be-
comes that of describing computations within a fixed
domain. As alluded to earlier, these domains can co-
exist so the machines become a way of partitioning
all that the model can compute. The choice of ma-
chine(s) is largely a matter of convenience and that
is a primary intention. Later we shall see how there
is flexibility in the level of abstraction we can express
our ideas in. The stack machine could operate with-
out the register machine for instance and still allow
for arithmetic. The stack machine could be made
largely redundant and all work done in the register
machine. This shows the redundancy in the model
that might been seen as a weakness in theoretical
terms, however, in the face of practical use keeping
close to the problem is an advantage not to be missed.

The major advantage in adopting this model comes
from practical application. Its rigour is paramount
and in the very few occasions external dependencies
arise these are well documented and a different nota-
tion is used. It is only at these points of dependency
that side effects can occur. It would be ideal if the
model could operate without side effects, however,
this is simply not an option as any real implemen-
tation must be able to at least communicate results
to the outside world. The only observable feature of
the model without side effects would otherwise be it

halting!
I don’t imagine the model will provide many in-

sights in to purely theoretical reasoning but it brings
practical computing in the form of software and hard-
ware to a common point. A single language that can
describe both software and hardware seems an impor-
tant step in closing the gap between using theory in
practice and studying practice using theory. I hope
that language design will benefit from the formalised
approach I take to the extent that the barrier to de-
signing new languages is no greater than using a new
notation in mathematics. If this were the case then
computing could take a step closer to mathematical
reasoning and expressiveness outside of the textbook.

3 The Model In Full

Plese refer to [1] for the rest of the description.

References

[1] “The U*-model”, P. Seymour, 2008.

[2] “The Breathe System”, P. Seymour, 2008.

[3] “ECMA Draft - Part 3 IL Instruction Set”, Mi-
crosoft, 2000.

[4] “Notes on Logic and Set Theory”, P.T. John-
stone, Cambridge University Press 1987.

3 Copyright c© 2006 Peter Seymour. All rights reserved.

This work is registered with the UK Copyright Service.


